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1 Introduction 
This annex provides a very summary description of a number of methods of forecasting that can 
be used in a sector PER. Forecasting is the use of various applicable analytical methods to 
project a variable into the future. In this case, our interest is in the revenues available in the 
future but expenditure can also be forecasted when necessary using some of the same basic 
methods. Tax revenue forecasting plays a central role in annual budget formulation. It provides 
policy makers and fiscal planners with the data needed to guide borrowing, use accumulated 
reserves, or specify monetary measures to balance the budget. It also informs about what fiscal 
actions are sustainable and hence how to balance fiscal policy to address the problems in the 
balance of payments and hence foreign debt.  
 

The annex covers (i) the budgeting context; (ii) the nature and process of revenue forecasting; 
the steps in forecasting; and the forecasting methods. The methods described in this annex are: 
(i) qualitative forecasting; (ii) judgement forecasting; (iii) micro-simulation models; (iv) moving 
average methods, including ARIMA; (v) exponential smoothing and Holt-Winters methods; (vi) 
single equation regression forecasting; and (vii) macroeconometric and GDP-based forecasting 
models. Expenditure forecasting is considered briefly in the Annex when macroeconomic 
revenue forecasting is addressed. The forecasting of the expenditure ceiling will be illustrated. 
 

The numerical methods of the Annex will be illustrated with Stata code. The note on 
microsimulation is designed largely for awareness of the existence of a forecasting method that is 
being increasingly used in revenue forecasting. In a setting where data are scarce, such as in the 
partner countries, it will normally be necessary to rely heavily on qualitative and judgemental 
forecasting. Successful use of these methods in turn relies on the existence of inclusive 
arrangements for multi-stakeholder participation in budgeting that encourage dialogue and 
transparent information-sharing. Forecasting is a specialist exercise that is prone to error and 
requires the build-up of expertise over time. Dialogue and information sharing helps to minimize 
error in the forecasting exercise. 

 

1.1 The Budgeting Context 
Sector-specific public expenditure reviews are integral components of the national budget cycle 
when the purpose of budgeting is to maximize the net outputs and outcomes of government 
expenditure. Such ‘performance-based’ budgeting relies on good forecasts of revenues from all 
sources. It also involves forecasting and prioritizing of the resulting expenditures of all sectors 
and of the economy as a whole, with particular reference to expenditures on: 

1. Infrastructure for social and economic development, including poverty reduction.  
2. Social protection services for poverty reduction. 

 

Forecasting is needed because the start of the process of annual budgeting precedes the actual 
expenditures of budgeted fund by almost a year. The need applies with greater force to 
expenditures associated with medium-term and long term planning, which look ahead for 3-5 
years.  



The need for forecasting applies to sector budgeting, local government budgeting, and national 
budgeting. Further, in the budgeting process, sector-specific forecasts are also needed to ensure 
that sector budgeting is mutually consistent with budgeting at the level of the local communities 
and budgeting to meet commitments on internationally-agreed development goals. In all cases, 
performance-based budgeting requires routine measurement of the economy, efficiency and 
effectiveness of the expenditures on infrastructure and social services, as part of the process of 
prioritizing them. 
 
There is no commonly-accepted standard method of producing macroeconomic and revenue 
forecasts for a sector PER. The PER Team will have to choose from, and give its own weight to, 
a set of modelling techniques, consumer and business surveys. Apart from microsimulation, the 
list of methods described in this manual can be treated as a basic set that can be used with the 
data available to any PER in the partner countries. Important among these is the use of expert 
opinion and judgement. Fiscal policy in the partner countries must be concerned with improving 
the consistency of resource allocation within a medium-term fiscal framework that promotes 
economic development. Thus, the PER should also be guided by a tractable small structural 
model such as illustrated in Annex 2. Such a model allows focus on long time horizons (greater 
than a year) rather than business cycles and treats the economy as an evolving system.1 For the 
budget year itself, the PER should supplement this with single structural econometric equations 
and individual variable forecasts that preserve the underlying consistency of the macroeconomic 
accounting supply and demand identities. Preservation of the identities allow the forecasts to 
capture the short-run adjustment of the economy to the long run development path. The identity-
preserving model can also be used for ‘what if’ scenarios, such as are usually reported in the IMF 
Article IV reports. In this case, the model is shocked and the resulting output compared with a 
baseline scenario used for budgeting.  
 
Use of judgement developed from in-depth analysis of the major sectors of the economy is an 
important aspect of this effort. This judgement should be developed through dialogue with the 
business community and other informed stakeholders along with expert opinion and judgement 
to produce macroeconomic and revenue forecasts. Indeed, a regular dialogue with the business 
community can help identify emerging trends in the economy with respect to variables such as 
investment and exports. Dedicated resources should be allocated to such regular engagement 
with the business community. In the USA, the results of this dialogue are published as the US 
Federal Reserve’s Beige Book; in the UK, the Bank of England’s Agency Report; in Canada, the 
Bank of Canada’s Business Outlook Survey.  
 

                                                           
1 Business cycles are defined as fluctuations or oscillations in economic data that recur periodically, for periods 
between 1.5 and 8 years. Periods longer than 8 years are parts of long waves or long trends. The main reference for 
this view is Burns, A. F., and Mitchell, W. C. (1946). Measuring Business Cycles. New York: National Bureau of 
Economic Research. 



2 The Nature and Process of Revenue Forecasting 
Accurate forecasting of revenues and expenditures is important for avoiding both underfunding 
and excessive funding of the government, and related consequences of associated surpluses or 
deficits. Forecasting uses available data and methods of analysis to estimate the value of a 
variable in the future. Here we are concerned with revenues and expenditures.  

 

2.1 What Revenues to Forecast 
Revenue forecasting seeks to estimate inflows from the following sources: 

1. Tax revenues identified from the taxable capacity of the sectors and aggregated to the 
national level, including fees, permits, and licences. 

2. Sales by sector agencies from productive business activities. 
3. Intergovernmental transfers received by the sectors from the national pool. 
4. Sector funding from international sources, including earmarked donor support, and other 

loans and grants. 
5. Hidden industrial sector transfers and ‘off-budget’ funding, whereby the sectors finance 

activities and institutions that benefit government, such as schools, clinics, libraries, and 
the like. 

 

Revenue forecasts can apply to aggregate total revenue or to single revenue sources such as sales 
tax revenues or property tax revenues. The forecasting methods seek to specify and identify the 
substantive and numerical relationships between the factors that determine taxable capacity and 
the amounts of revenues actually collected. 

1. The factors that determine the taxable capacity are defined in terms of 
a. Productive capacity - value-added - by the industrial sectors 
b. Tax rates, including value-added taxes. 
c. User fees and costs of permits issued. 
d. Draw-downs rates from sales of government-owned business enterprises. 

 

2. The actual amounts of revenues government collects in the form of  
a. Income, profits taxes – PAYE 
b. Domestic taxes on goods and services 
c. Property taxes 
d. Other taxes 
e. Draw-downs from sales of government-owned business enterprises 
f. Receipts of social security contributions 

 

2.2 What Expenditures to Forecast 
Expenditure forecasts can apply to aggregate total expenditure or to single expenditure 
categories. Here too, the forecasting methods seek to specify and identify the substantive and 
numerical relationships that determine the government’s spending program as classified under 
COFOG. 



Within each COFOG category, expenditure forecasting seeks to estimate outflows of the 
following: 

1. Intermediate Consumption 

2. Compensation of Employees 

a. Wages and salaries 
b. Employers’ social contributions 
c. Employers' imputed social contributions 

3. Tax incentives and allowances on Production and Imports 

4. Subsidies 

5. Tax incentives and allowances on 

a. Property Income 
b. Income and wealth 

6. Social benefits other than Social Transfers in-Kind 

a. Pensions 
b. Unemployment benefits 
c. Long-term care benefits 
d. Family benefits 
e. Benefits n.e.c. 

7. Social Transfers in-kind 

8. Other Current Transfers 

a. To Households 
b. To CARICOM, etc.; To OECS 
c. Current transfers n.e.c. 

9. Capital Transfers 

a. Bank support package 
b. Capital transfers n.e.c. 

10. Gross Capital Formation 

a. General infrastructure to support enterprise 
b. Other general services 
c. Health 
d. Education 
e. Research and development 
f. Road Transport and Utilities 
g. National Security 
h. Depreciation/Maintenance 

11. Contingencies 
 
  



2.3 The Forecasting Steps 
2.3.1 Step 1: Selection of forecast period 
This step involves selection of a period over which budget data are examined, which depends on: 

a. The availability and quality of data,  
b. The type (and sustainability) of the revenues or expenditures to be forecasted,  
c. The degree of accuracy sought. 

 
There are many appropriate time-frames over which the forecasts should be prepared. Much 
depends on who is forecasting and what is forecasted. The central government might look at 
forecasts for one year ahead to forecast gross revenues or expenditures. To invest appropriately, 
the managers of the electricity supply, the Ministry of Education and the Ministry of Health must 
look ahead for 20 years to forecast demand and thus must forecast revenues and expenditures in 
the same time frame.  

 
2.3.2 Step 2: Examination of data for stationarity 
This step involves examination of the data for symmetries, such as trends and rates of change. 
Here, the main concern is to identify evidence of: 

a. Stability 
b. Nonstationary nonlinear paths, such as 

i. Exponential growth 
ii.  Quadratic paths 
iii.  Structural breaks and seasonal or cyclical variation. 

 
The predictability of the budget category must be assessed, given the evidence on the trends. 
This is based on the characteristics of the category, such as 

a. The rate structures approved for revenue collection. 
b. The level demand and rate of change of demand for revenues from the relevant 

source. 
c. Significant seasonal or cyclical variation in expenditure. 

 

2.3.3 Step 3: Adoption of assumptions 
Government fiscal policy is affected by economic, social and political forces. Accordingly, 
forecasting requires explicit assumptions and processes. This step involves adoption of 
applicable assumptions about the revenue source that affect the methods used, including how the 
revenues are affected by: 

a. Changing economic conditions 
b. Changing population size and citizen demand 
c. Changing government policies. 
d. Changing administrative procedures 



2.3.4 Step 4: Selection of forecasting methods 
This step involves actual selection and application of the methods to estimate or forecast revenue 
collections in future years. The method selected depend on the nature and type of revenue.  

1. Qualitative and judgemental methods are needed for revenue sources that are highly 
uncertain, including: 

i. New revenues sources 
ii.  Grants  
iii.  Asset sales or sales from government-owned business activity. 

2. Quantitative methods are needed when the revenues are based on greater certainty, 
such as  

i. Revenues from income. 
ii.  Revenues from habits, such as the ‘sin taxes’ – taxes on alcohol and cigarette 

sales.  

3. When in doubt, the method selected should be the simplest of the options available, 
subject to the evaluations in steps 5 and 6 below.  

 
Following the selection, the methods are applied to obtain the estimates sought. More than one 
method might be used and the results averaged. 
 

2.3.5 Step 5: Evaluation of estimates 
At this step, evaluation of the estimates is done to ascertain their reliability and validity.  

a. Evaluation of validity requires validation of the assumptions about the revenue 
source. Valid estimates require sound assumptions about the existing environment:  

i. Economic.  
ii.  Population (demand).  
iii.  Administrative.  
iv. Political.  

b. Evaluation of reliability is based on sensitivity analysis. This involves: 
i. Varying key parameters used to create the estimates.  
ii.  Assessing if small parameter changes result in large changes in the estimates 

or small. 
A. If large, the projection is given a low degree of reliability. 
B. If small, the projection is given a high degree of reliability. 

 
  



2.3.6 Step 6: Monitoring of outcome and comparison with forecasts 
Actual revenue collections are observed and compared against the estimates. The extent of 
deviation or ‘error’ is measured and used to assess the accuracy of the forecasts. As a general 
rule, a forecast should be ‘unbiased’ in the sense that the expected value of the deviation of the 
actual estimates and the forecast should be zero. Frankel (2011)2 has warned that bias is typical 
of government forecasting. The degree of accuracy is a measure of the likelihood that there will 
be revenue and hence budget shortfalls or surpluses. From this standpoint, forecast accuracy 
means that the actual forecast errors should be minimised to the greatest extent possible. The 
PER Team should be aware that forecast accuracy is related to the considerations in Step 2. 
Forecasting errors will tend to be larger when the data is non-stationary and smaller when the 
data is stationary. Non-stationary behaviour arises near turning points in the economic seasons 
and cycles, when the economy is farthest above or below its trend. Stationary behaviour will be 
observed when the economy is growing near to its trend growth path.  
 

2.3.7 Step 7: Updating the Forecasts 
In this final step, the forecasts are updated if the assumptions must be changed. Specifically, 
updating is needed when the conditions in the economy are changing. These relate to: 

a. Economic forces.  
b. Population (demand).  
c. Administrative arrangements.  
d. Political developments.  

 

  

                                                           
2
 Frankel, J. (2011). Over-optimism in Forecasts by Official Budget Agencies and its Implications, Oxford Review of 

Economic Policy 27(4): 536-562. 



3 The Forecasting Methods 
Many forecasting methods are available, ranging from relatively informal qualitative methods to 
quantitative methods that are highly sophisticated. They are widely used in revenue forecasting 
(Kyobe and Danninger, 2005).3 Classic references are Bowerman and O'Connell (1993)4, Box 
and Jenkins (1976)5, Brockwell and Davis (2002)6, Chatfield (2004)7, and Hamilton (1994).8  
 

As indicated above, in forecasting, the choice of methods depends on what is being forecasted 
and the time-horizons of the forecasts. Sophistication is not the same as accuracy and simplicity 
is an asset when many categories of revenues or expenditure are being projected. In the case of 
revenue forecasting especially, since many categories of tax are involved, the volume of work 
might be very large. This recommends less sophisticated methods that are quite reasonable in the 
light of the data challenges and the costs of using more sophisticated methods.  
Whatever the choice, all revenue and expenditure forecasting assume that the past combines with 
current discretionary policy interventions to predict the future. That is, let �� be the category of 
revenue or expenditure, ��,� the forecasted rate of change of the category from � − 1 to �, and 

	
� government’s discretionary policy intervention in �. Then, the general budget forecast 
equation is: 
 

1. �� = �1 + ��,������ + 	
� 
 

All of the forecasting methods described below are applications of equation (1). It will be 
referenced repeatedly in this Annex. 
 

3.1 Qualitative and Judgement Forecasting Methods 
Qualitative forecasting methods are based on judgements or ‘guesses’ about the trends in the 
revenues that can be expected from each category. The judgements can be provided by experts or 
by consensus among interested stakeholders who are involved in some way with the tax source 
and can make reasonable assessments of what is likely to happen in the future. This is the 
method that is perhaps most appropriate under two conditions: 

a. When there is little applicable data available.  

b. When there is rapid change in the environment and hence the assumptions – 
economic conditions, population growth, technological conditions, administrative 
arrangements, political conditions, and the like.  

                                                           
3
 Kyobe A, and S. Danninger. (2005). Revenue Forecasting-How is it Done? Results from a Survey of Low-Income 

Countries. IMF working paper No.WP/05/24, IMF, Washington D.C., USA. 
4 Bowerman, B. L. and O'Connell, R.T. (1993). Forecasting and Time Series: An Applied Approach, 3rd ed. Pacific 
Grove, CA: Duxbury. 
5 Box, G.E.P and Jenkins, G.M. (1976). Time Series Analysis, Forecasting, and Control. San Francisco: Holden-
Day.  
6 Brockwell, P.J. and Davis, R.A. (2002). Introduction to Time Series and Forecasting. New York: Springer. 
7 Chatfield, C. (2004). The Analysis of Time Series, 6th ed. Boca Raton, FL: Chapman & Hall/CRC. 
8 Hamilton, J. D. (1994). Time Series Analysis. Princeton, NJ: Princeton University Press. 



c. When the revenue and expenditure categories being forecasted depends primarily on 
the policy choices of government, and are not linked directly to macroeconomic 
developments or do not follow a stable trend. Examples of these are government 
spending to support the financial sector, revenues obtained from public sector entities, 
and expenditure on large infrastructure projects. In equation (1), this means that the 
forecast is shaped mainly by 	
�. The previous year’s level does not matter much. 

 

The qualitative estimates can also be based on a study of the trends in available data, but will 
tend to be heavily influenced by what is assumed about the environment and how changes will 
affect evident trends.  
 
Qualitative forecasting is highly susceptible to political influence, especially information about 
what government plans to do and information about the revenue imperatives of the budget. 
Notwithstanding its value when data are limited, excessive reliance on qualitative judgements 
tends to lead to error. There is no consistency of the assumptions of different experts and the 
method provides no protection against spurious correlations and assertions about causal 
relationships. Dialogue for mutual consistency is also needed to get the best out of this approach, 
but even in this case the consensus might be dominated by strong and influential experts in the 
group. The method is perhaps most useful as a complement to strong quantitative methods that 
can be produce and used by some of the experts available to government. In this case, the final 
estimates should be produced by adjusting for the qualitative assessments by experts from 
different fields or ministries who have some significant qualitative information about, and 
experience with, the revenue sources. 
 
 

3.2 Quantitative Methods 
Quantitative methods rely heavily on available data that are closely related to the revenue source. 
There are two general types of quantitative forecasting methods: (i) time series forecasting based 
on identification and projection of past trends; and (ii) construction of causal models using 
specification of a model that relates the particular revenue type to the variables that are assumed 
to cause it or to associate strongly with it.  
 
These methods make and transmit explicit assumptions to the forecasts, using very specific 
numerical procedures the precision of each of which can be specified. That is, they assign an 
estimate of the ‘margin of error’ or degree of possible error to the forecasts. Time series methods 
usually provide better forecasts but, when well-done, the causal models have the advantage of 
providing more reliable information about the interactions among the factors that inform the 
ultimate forecasts. Annex 2 provides an example of how interactions are analysed with causal 
models. In general, quantitative methods are better than qualitative methods when forecasting 
revenues.  



Below is annotated Stata code to allow repeated numerical experimentation with the data. Used 
as written, the code will allow any data to be loaded and used without modification. Other code 
must be added to generate practical output. In this Annex, time series data will be used, so the 
code indicates that Stata must be told with “tsset’. 

>capture program drop NAME1 // this line allows repeated use of    the program name 

>program NAME1 // names the program to be run 

>capture log close // keeps a running log of the work for review 

>log using NAME2, replace // names the log of the work 

>clear // used to allow repeated runs with original data in memory, original dataset not modified 

>set matsize 1000 // optional, only useful if running large models 

>set more off // prevents repeated halting of the reporting of the results generated 

>use C:\NAME3\name4.dta // path code to the Stata dataset called name4.dta 

>tsset month, monthly // tells the program that monthly time series are being used 

>end // indicates that the computations have ended 

>NAME1 // tells Stata run this program 

>log close // closes the log of the work being done 

>exit 
 

3.2.1 Time Series Forecasting – Basic Concepts 
Time series forecasting of revenues is based on the assumption that patterns in the historical data 
of a data series can be used to project future revenues. The method relies on the concepts of 
trend, cycle, season and random change. 
 

3.2.1.1 Distinguishing Trend, Cycle, Season and Noise  
In general, a time series is usually decomposed into four components: (i) a trend, which is 
normally of greatest interest to the forecaster; (ii) a seasonal component; (iii) a cyclical 
component, which reflects the effects of business cycles; and (iv) a random (noise) component.  
 

Trend  
Trend is the general (average) direction of change of a data over time. If the time series increases 
over time, then it is said to have a positive trend. If it decreases over time, it is said to have a 
negative trend. In either case, the mean of the series is changing over time and the series is called 
non-stationary. If direction does not change in either direction, then the series has no trend. Its 
mean is constant over time and the series is call stationary. This is a simple test to apply: 

a. Divide the data in several parts – say 5 (sequential) parts. 

b. Compute the mean and the variance of each part. 

c. If the mean or variance of each part is about the same as the mean or variance of all the 
other parts, then the time series is stationary. 

d. If the mean or variance of the series is different from those of any of the other parts, then 
the time series is non-stationary. 



Identification of trend requires a series that is long enough for the patterns to be discernible. The 
general rule for the length of the series is that if the number of observations is less than 50 
observations, it is ‘short’ and requires special methods. Most time series methods can be used if a 
series is equal to or longer than 50 observations. The trend of a time series may have any of 
several mathematical characteristics, for example: (i) linear, if it increases or decreases at a 
constant rate over time; (ii) exponential, if the level of the series increases by a constant 
percentage over time. 
 

Cyclical 
The cyclical fluctuations of a revenue time series result from the business cycles of the economy. 
They are mainly the fully worked out medium term results of fluctuations in capacity utilization 
and are the focus of medium-term expenditure frameworks of countries. Introduction of value-
added taxes (VAT) and even user fees in health and education in the partner countries have made 
the revenue flows significantly dependent on the business cycles of their economies. So, these 
effects are now relatively important to a PER. 
 

Seasonal 
Seasonality of revenues refers to revenue cycles that change within a year. If a time series tends 
to vary over the course of a year in response to some phenomena, including variations in output 
with a fixed capital stock, or the effects of moving from the dry season to the wet season, or the 
times when schools are on holidays, then it is said to have a seasonal component. These 
components are of great interest to revenue forecasters. An interesting example is the spike in 
customs duties or air-travel taxes, or even VAT during the winter season of the North Atlantic, 
when the Caribbean has balmy weather and visitor arrivals spike.  
 

The PER Team should examine carefully how the seasonal component and the trend component 
relate, because this has a direct bearing on the methods used to smooth the series and construct 
forecasts. The algebra is simple and intuitive. Consider ����, with a trend, ��, and a seasonal 
component, ��. Trend and season could be additive, in which case, we would check with: 

 

2. ���� = �� + �� 
 

If we suspect that they are multiplicative, then we would use: 
 

3. ���� = �� ∗ �� 
 

How can the PER Team tell? The rule is simple. Check the size of the seasonal fluctuations and 
how they change along the trend: 

a. If the size is not related in any way to the level of the trend of the time series, then �� and 
�� are additive.  

b. If the size is related to the trend level of the series, then �� and �� are multiplicative 
effects. 

 



Consider Figure 1, Panel A. It portrays monthly crime in one Caribbean country. It is clear from 
examination of the data that serious crime fluctuates more widely in the later months of the series 
when the trend seems to be higher. The right approach here is to treat the trend and seasonal 
effects as multiplicative. On the other hand, the data in Panel B seems to fluctuate independently 
of the level of the series. The series shows additive trend and seasonal effects. With a little 
experience and a lot of graphing, the analyst can tell quickly which of these scenarios applies. 
Multiplicative effects in time series are far more common than additive effects. 
 

Figure 3-1: Monthly Data on Crime and Visitor Arrivals in a Caribbean Country 
        

  
Panel A: Crime data in a Caribbean Country Panel B: International Visitor Arrivals in a Caribbean Country 

 
3.2.1.2 Random Noise 
Randomness refers to unexpected events that may distort trends that otherwise exist over the 
long-term. These are often called ‘noise’ or ‘shocks’. For example, natural disasters might affect 
the economy and lower tax flows. Time series forecasting turns on the ability to remove from the 
data the random component. Removal of noise is called ‘smoothing’ or ‘filtering’ in the 
professional literature. Random noise is like the residuals of a regression model – the deviations 
of actual data from a fitted model. Figure 2 illustrates. The random fluctuations represent the 
effects of all sorts of factors that analysts assign to randomness because they cannot explain them 
with the time series model of trend, cyclical and seasonal effects. When noise is removed from a 
series, the other components of the series are made more visible and can be identified with well-
known techniques and modern statistical software, and can also be used for forecasting.  



Figure 3-2: An example of random noise 

 
 

3.2.1.3 The Simplest Forecast – the Naïve Forecast 
The simplest forecast of a budget item (revenue source or an expenditure category) is often 
called a ‘random walk’ or naïve forecast. The method is very useful when forecasting small, 
erratic budget categories for which the sign or direction of movement of the previous trend is not 
robust indicator when choosing the forecast period. The method assumes that the revenue 
available now, time �, is the same as the revenues that will be available in the immediate future, 
time � + 1. In relation to equation (1), this means that ��,� = 0. The naïve forecast is therefore 

widely used in combination with judgement forecasting of revenues. 
 

For example, suppose the data in Panel A of Figure 3 represent the VAT collections of Trinidad 
and Tobago since 1970. Panel B is the first difference of that data. The difference is computed by 
subtracting VAT for the last period from VAT for the current period.  
 

Figure 3-3: Data illustrating a random walk 

  

Panel A: Effective Consumption Capacity for T&T Panel B: First Differencing of Effective Consumption in T&T 



Then, Panel B suggests that a reasonable model for the VAT data might be: 
 

4. 	���� − 	������ = �� 
 

where �� is white noise. White noise is a special form of randomness. It is central to the analysis 
of time-series data. A variable �� is white noise if, for all �,  

a. Its expected value equals 0. 
b. Its variance is a constant ��.  
c. For any variable such as 	����, the draws are independent. This means that the 

correlation between �� and �� is zero for � not equal to �.  
 

If �� has a normal distribution, then it is called Gaussian white noise. This concept is mentioned 
here because it is one of the most common benchmarks in all forecasting and it will be needed 
for the rest of the Annex. 
 

The model in Equation (4) can be written as: 
 

5. 	���� = 	������ + �� 
 

This is a random walk model. It is widely used for non-stationary data. Random walks usually 
have long periods in which there appears to be a trend upwards or downwards, which can change 
unpredictably and move in the other direction. The forecast of VAT for the next year would then 
be: 

6. ��� !���	����"� = �!�#�$	���� 
 

There are several variants of such a forecast: 
a. The past two periods can be averaged to make the forecast. 
b. The current observations plus a guesstimate for seasonal effects could be used as the 

forecast.  
 

An alternative to equation (5) is for the budget item to have a path defined by  
 

7. 	%� = & + 	%��� + �� 
 

where & is a constant term and �� is white noise. This is a case of a random walk with drift, 
where the drift term is &. It means that the current value of the budget item is equal to its value 
last period (� − 1) plus some fixed amount & some white noise, ��. Notice two things: 

a. The mean of the small budget item depends on �, so the item is not stationary.  
b. If equation (7) applies, then the best prediction of 	%� is simply & + 	%���.  

 

There is one additional type of random walk that the PER Team should consider. That is one 
with both a time trend and drift. It generates the budget item according to the following equation 
(8): 

8. 	%� = ( + &� + 	%��� + �� 



Here, ( is a constant term, & is the coefficient of the time trend indicating how fast 	%� changes 
with time. The best predictor in this case is ( + &� + 	%���.  
 

In addition to their use in naïve forecasting, these concepts will become clearly later in the 
manual when doing more sophisticated forecasting. 
 

3.2.1.4 The Moving Average Forecast 
The moving average forecast is perhaps the most commonly used forecast of budget categories. 
It makes the average from arbitrarily selected recent data in the series. Moving averages are 
simple linear filters that do a good job of forecasting and is often the standard against which 
other methods of budget forecasting are judged.  
Like any average, the moving average eliminates the random elements and smooths the data by 
using an average of parts of the data. To understand a moving average of revenues one must 
think about ‘leads’, which are periods ahead of time �, and ‘lags’, which are past periods. The 
conventional label for the number of periods ahead is ) and for the number of lags is *. Then, for 
%� the observations of a time series, the future value forecasted is the moving average +�,� of %�. 
This is defined generally as: 
 

9. ����"� = +�,� = ∑ -.�/0.1
.234
∑ -.1
.234

 
 

In this equation: 

 56, 7 = −*…0…), is the set of weights to be assigned to the measure %�"6.  
 %� is the variable to be forecasted (in this case vat) 
 * is the longest lag in the span of the filter 
 ) is the longest lead in the span of the filter 

 

3.2.1.5 Equally Weighted Moving Average 
When all the weights are the same and conventionally set at 1, a special case is the equally 
weighted moving average of the form. The forecast is: 
 

10. ����"� = +�,� = �
9":"�∑ %�"69

6;�:  
 

The definition assigns equal weights to all observations. For a "symmetric" moving average, it is 
necessary to set ) = *. So, for a three-period moving average, one sets ) = * = 1. This means 
the average is computed with the first lagged term, the current term, and the first lead term. 
Common practice is determined by the number of time periods of tax collection in a year. Thus, 
for quarterly tax payments only four terms are used, and for monthly tax data twelve terms.  
The graph in Panel A of Figure 4 is a 3-period symmetric moving average of the data in Figure 1. 
The graph in Panel B is a 7-period moving average, so it uses the first 3 lags, the current period, 
and the first 3 leads. The averages have eliminated some of the randomness in the data, leaving a 
smooth trend (trend-cycle) component. The graph in Panel B is smoother than that in Panel A, 
but the true trend-cycle might be smoother still. 



Figure 3-4: 3-period and 7-period Symmetric Moving Averages 

  

Panel A: 3-period moving average Panel B: 7-period moving average 

 

Using the program written in the Introduction, the above graphs can be generated with additional 
Stata ‘tssmooth’ code, as follows: 

>tssmooth ma svat3=vat, window(1 1 1) 

>tsline vat svat3 – to see the original and the smooth data 

>tssmooth ma svat7=vat, window(3 1 3) 

>tsline vat svat7– to see the original and the smooth data 

 

The general form of the code is  

>tssmooth ma newvar=exp [if] [in], window(#1 #2 #3) 

The type of forecast made with a moving average depends on the type of variation in the data. 
Reconsider the multiplicative representation of the VAT data above (equation 3). If we only 
concentrate on the seasonal effects, and if there is good graphical reason to believe that the size 
of the shocks is related to the trend level of the series, then the random shocks � can be 
incorporated multiplicatively as 
 

11. ���� = �� ∗ �� ∗ � 
 

  



This is the Bowerman and O'Connell (1993: 355)9 multiplicative decomposition model of a time 
series. Since a moving average creates an average over several periods, it always tends to remove 
the noise, especially if the periods are well-chosen. If the periods ) and * are long enough, for 
example ) + * + 1 ≥ 12 for monthly data, then the seasonal component might be removed as 
well. In that case, all that remains is the trend-cycle component. If we choose ) = 5 and * = 6, 
or for ) = 6 and * = 6, the forecast is 
 

12. ����"� = +@A�,� = �
9":"�∑ ����"69

6;�:  
 

It is also possible to forecast the seasonal behavior of the revenues. Since +@A�,� is just the trend-

cycle, it must also follow that 
 

13. �� ∗ � = @A�/
BCD/,/

= E/∗F/∗G
BCD/,/

 

 

This equation isolates the seasonal and noise components of the time series. For example, for the 
7-period moving average, the applicable Stata code is: 

>g seasvat=vat/svat7 

 
When the method is applied to the series in Panel A, Figure 1, using the 7-period moving 
average, the result is the seasonal series in Panel A, Figure 5. 
 

Now, since the seasonal and noise components are multiplied, the mean of each cannot be 
individually identified in this equation. However, a bit of statistical theory helps here. In linear 
regression analysis with a constant term, it must be assumed that the mean of the error term is 
zero if the constant term is to be identified. This same assumption used here amounts to 
assuming that the mean of �, is 1, i.e., HI�) = 1. If that assumption holds, it must also hold that 
the process of taking the average yields 
 

14. �� = @A�/
BCD/,/

= E/∗F/∗G
BCD/,/

 

This can be used as the seasonal forecast for the next period. However, if in doubt about the 
assumption that the mean of �, is 1, i.e., HI�) = 1, it is easy to get the seasonal component alone 
just by taking another moving average of the result in the equation (11), choosing the values for 
F and L for that average after careful scrutiny of the graph of �� ∗ �. The results of this move are 
portrayed in Panel B, Figure 5. 
 
 
 

                                                           
9 Bowerman, B. L. and O'Connell, R.T. (1993). Forecasting and Time Series: An Applied Approach, 3rd ed. Pacific 
Grove, CA: Duxbury. 



Figure 3-5: Graphs of Seasonal Effects 

  

Panel A: Seasonal and Random Effects Panel B: Seasonal Effects Isolated with Moving Average 

 

Finally, using equation (11), the graph of ���� with seasonal effects considered would be as 
portrayed in Panel A, Figure 6. Panel B, Figure 6 should also be graphed for a visual 
understanding of how the predicted seasonal effects compare to the trend-cycle. The forecast for 
� + 1 would be: 
 

15. ����"� = +@A�,� ∗ �� 
 

Figure 3-6: Trend and Seasonal Effects Combined 

 

 

  



Moreover, the PER Team could take an average over all the series, +@A�, and then measure the 
size of each +@A�,� relative to that average by computing: 
 

16. JI��) = BCD/,/
BCD/

 

 

This type of calculation is very helpful in understanding what is happening to revenues during a 
budget year, and what is likely to happen in the next year. In this example, the PER Team would 
be able to assess the likely amount by which VAT would exceed the average in a given month, 
and should find that in some months the expected revenue flow is higher than in others. 
 

3.2.1.6 Getting Additive Seasonal Effects - A Regression Method  
If the seasonal effects are additive, then regression analysis can be used to isolate and analyze 
them. Much depends on the type of trend that is evident after graphing the data. Consider a 
quarterly revenue series, %�, the graph of which exhibits a linear time trend. Let K6 be a 
categorical or dummy variable for quarter 7. So K6 = 1 if quarter I and K6 = 0 otherwise. For � 
an indicator of time, we could run the regression: 
 

17. %�L = MN + M�� + M�K� + MOKO + MPKP + �� 
 
With a constant term (MN) in the equation, one of the K6 must be omitted to avoid perfect 
collinearity with MN. We have simply chosen K� but this is a matter of choice. The coefficient M� 
measures the trend effects, which is to say the slope of the trend. The additive seasonal effects 
can now be isolated as follows: 

1. For quarter 2, K� = 1, so the average level in that quarter, net of the time trend, is 
MN + M�.  

2. For quarter 3, KO = 1, so the average level in that quarter, net of the time trend, is 
MN + MO.  

3. For quarter 4, K� = 1, so the average level in that quarter, net of the time trend, is 
MN + MP.  

 

The notion of ‘net of the time trend’ is to be understood as ‘after controlling for the time trend’. 
So M� measures the difference between the average level of Q� in the first quarter and the average 
level of Q� in the second quarter, after controlling for the time trend, and so on for MO and MP.  
 

Of course, the regression could be run without a constant term and include all the dummies. 
However, the measures of the seasonal effects would be the same. What is more interesting is to 
use a reference period or a reference level in the model, because that helps with getting to the 
true meaning of ‘controlling for the trend effects’. For example, let �̅ be the mean time or the 
midpoint of the series. Then, we really should estimate the forecasting model as: 
 

18. %S� = MN + M�I� − �̅) + M�K� + MOKO + MPKP + �� 



Then, the appropriate interpretation is that around the midpoint  of the time series, the average 
value of Q� in K� is MN. Similarly, around the around the midpoint  of the time series, the average 
value of value of Q� in K� is MN + M�, and so on. An alternative reference point can be used, such 
as the terminal time �, with suitable adaptation of the interpretation.  
 

With Stata, all of this is easier than the algebra might suggest. In Figure 1, the monthly 
international visitor arrivals show evidence of additive seasonal effects. To estimate them with 
regression analysis, run a regression with a constant and eleven dummies, since the data is 
monthly. Stata provides a very powerful way of creating the dummies quickly with its xi 
command. The applicable code is: 

>gen moy = month(dofm(month))  
>summarize month, meanonly 
>gen month2 = month - r(mean) 
>xi: reg visits month2 i.moy 

 

1. The moy variable that generated records the month of the year – month 1 to month 12. 
The dofm() function converts the monthly variable month to a daily variable.  

2. The second command generates the mean of month. 
3. The third command produces the I� − �̅) or month-meanmonth variable 
4. The fourth command runs the regression with the dummies, telling Stata to create the 

dummies on the fly. 
 

Table 1 is the type of Stata output you should expect: 

Table 3-1: Stata output of Additive Seasonal Model 

 

 



The results indicate that IVA really has two seasons in this country: October to February and 
June/July. The high point is January with about 3715 visitors and every other month in the 
seasons has significantly fewer visitors. For example, in June, the month of the mid-point in the 
second season, the number of visitors is expected to be 3715-1190 or about 2525 visitors. So, tax 
revenues from this tax base should be expected to behave similarly. 
 

3.2.1.7 Unequally Weighted Moving Averages –Forecasting total taxes 
When the weights assigned are not equal, the resulting forecast is an unequally-weighted moving 
average. Suppose the PER Team wants to use the moving average to forecast total taxes without 
adding up the individual tax forecasts. Then, the forecast is best computed with a moving 
average as 
 

19. ����$	��% ��"� = +�,� = ∑ -.�/0.1
.234
∑ -.1
.234

 

 

where 56, 7 = −*…0…) is the set of weights to be assigned to the past total taxes %�"6. 
Suppose that available information indicated that in a 3-period moving average, the applicable 
weights should be 1 for %���, 3 for %� and 2 for %�"�. Then, the definition yields: 
 

20. ����$	��% ��"� = +�,� = ∑ -.�/0.1
.234
∑ -.1
.234

= �
�"O"� T%��� + 3%� + 2%�"�V 

 

The famous Census-II X11 and X12 seasonal adjustment procedures use this method. This is the 
method of choice in computing moving averages of total taxes since total revenues vary 
seasonally during the year. For example, using the crime data in Figure 1, the weighted moving 
average graphed in Figure 7 can be generated with the following Stata code: 
>tssmooth ma wmcrm3=allcrime, weights(1<3>2) 

>tsline allcrime wmcrm3 
 

Figure 3-7: Results of Weighted Moving Average 

 



3.2.1.8 Exponential Smoothing 
Exponential smoothing is a common forecasting technique widely used in the private sector. It is 
a corrected moving average of forecasts, with the correction being an adjustment for the error 
observed in the preceding forecasts. There are two types of exponential smoothing in the 
literature: simple exponential smoothing and double exponential smoothing. 
 
Simple Exponential Smoothing 

Simple exponential smoothing is a popular method that is suitable for smoothing a revenue series 
�� that has no trend but has a mean, MN�, that changes over time.10 That is, we are considering the 
tax generating process as: 
 

21. �� = MN� + �� 
 
The simple exponential smoother produces smooth budget forecasts �� using the definition: 
 

22. �� = (�� + I1 − ()���� = ���� + (I�� − ����) 
 
Here, ( is called the smoothing parameter and takes values between 0 and 1. It is sufficient to 
observe that since ( and (1 − () are weights (probabilities for example) that sum to 1, it must 
also hold that the smoother removes noise in the revenue series ��. Part of the reason a method 
such as this is often treated as not ‘rigorous’ is that ( has to be chosen by the analyst, for 
example after suitable dialogue among members of the PER Team. This makes it vulnerable to 
political influence. ���� can be treated as the mean value of the revenue series �� from the initial 
period up to � − 1. So, the simple exponential smoother takes a fraction I1 − () and uses it to 
update this mean, ����, at each t by adding a fraction, (, of the revenues, ��, collected at time t. 
What results is that as the actual revenues change over time, the smoother will also change, but 
at a slower pace. This helps to remove the noise in the tax data. �� is the model’s forecast of 
revenues ��"�, if we have an initial value �N at time �N. Similarly, ���� was its forecast of ��.  
 
To see the advantages of simple exponential smoothing over the simple moving averages 
discussed so far, consider a slight adjustment of the smoother that is widely used to forecast 
consumer spending. Assume that equation (22) forecasted revenues �� with some error. So, it 
forecasted ���� but �� was realized. Then, the forecast error is �� − ����. The next forecast 
should take account of this error. Suppose that the smoother is written as a forecast of ��"� by 
giving the earlier forecast of �� a weight of I1 − () rather than just ( and then adjusting it by 
adding the (-weighted difference �� − ���� to compensate for the earlier error. The result is: 
 

23. �� = (I�� − ����) + I1 − ()���� 

                                                           
10 So, by the definitions provided above, the series is not stationary. 



This is actually the adaptive expectations model that has been widely used to forecast consumer 
spending based on expected income, when those expectations are not fully realized. This, in turn, 
is an application of the general partial adjustment model, so-called because only a fraction of the 
error is used to adjust the earlier forecast. 
 
Now, to see where the idea of ‘exponential’ came from, observe that application of the definition 
in (22) to substitute for ���� gives 
 

24. �� = (�� + (I1 − ()���� + I1 − ()I1 − ()���� 
 
If this is done repeatedly for � periods, the revenue-generating process can be generalized to: 
 

25. �� = I1 − ()��N + (∑ I1 − ()WW;���
W;N ���W 

 
Thus, the simple exponential smoother is actually a special case of a weighted moving average, 
and in fact is an exponentially-weighted moving average because the weights applied to past 
observations decline geometrically. So, the method tends to give more weight to recent revenue 
data. Its advantage is that, rather than just using some recent revenue data arbitrarily selected, all 
past revenue data are incorporated into the current period's exponential moving average forecast.  
 
Initializing and Choosing ( 

A good way to get �N is to use an average of the first set of observations in the revenue series ��, 
for example the first half of the series. It is a matter of choice, which adds to doubt about rigor. 
To choose (, apart from just experimenting and seeing what gives a good fit to the revenue data, 
some statistical methods can help. This parameter determines the extent of smoothing and the 
general expectation is that as ( approaches 1, the degree of smoothing falls. This happens 
because less weight is placed on the previous estimate of the mean of the unfiltered series and 
more weight is placed on the most recently observed value of the unfiltered series.  
 
Some degree of smoothing is required to eliminate the noise in the data. One approach, generally 
used by most statistical software, is to choose ( in order to minimize the ‘root mean square 
error’ of the forecasts – the square root of squared deviations between the forecasts and the 
realized values. To make forecasts beyond ��, which is the forecast of ��"�, �� itself is used 
because ��"� is not yet realized. This is a consequence of the absence of a trend in the data. 
Thus, a forecast for ��"� applies the definition and gives: 
 

26. ��"�X = (��"�X +I1 − ()�� = (�� + I1 − ()�� = �� 
 
  



The general Stata syntax for this simple exponential smoother is: 
>tssmooth exponential [type] <newvar> = <exp> [if] [in], 
                     [ parms(#) [ samp0(#) | s0(#) ] forecast(#) ] 

 

Here is the Stata code used to generate the exponentially weighted moving average of the data in 
Figure 1: 

>tssmooth exp sallcri4=allcrime, parms(0.4) 

>summarize allcrime 

>tsline allcrime sallcri4, yline(`=r(mean)') 
 

And, 

>tssmooth exp sallcri9=allcrime, parms(0.9) 

>summarize allcrime 

>tsline allcrime sallcri9, yline(`=r(mean)') 
 

The results are graphed in Figure 8, with the original series for comparison. Notice that the 
smoothing parameter 0.4 has smoothed the series (Panel A) much more than the parameter 0.9 
(Panel B) and does not capture the movement of the series as well. This is because in Panel A the 
forecast for each period is adjusted by only 40% of the previous period's forecast error, as 
compared to 90% for the smoothing in Panel B. In the latter case, the forecast tracks the actual 
series very closely, with a one-period lag. The one-period lag occurs because the forecasted 
value for period t is the smoothed value for t-1, which is mostly just that period's actual value. 
 

Figure 3-8: Comparison of results of exponential smoothing  

  

Panel A: Smoothing Parameter 0.4 Panel B: Smoothing Parameter 0.9 



Double Exponential Smoothing 
Double exponential smoothing is what it says – application of the simple exponential smoother 
twice to the same series. It is also one way to take account of trends in the revenue series. It is 
appropriate for forecasting a revenue series when the graph of the series has a mean that evolves 
over time and also has a time trend. An important distinction must be made between a global 
trend and a local trend. If the trend moves in the same direction for all time periods, it is called 
global. In that case, the model of the revenue generating process is: 
 

27. �� = MN� + M�� + �� 
 

 
This equation is similar to the one used above to demonstrate how regression methods can be 
used to address additive seasonality. However, trends are not usually nicely behaved. If the trend 
changes direction in some periods, the distinct trends are called local trends. If each local trend is 
linear, we consider the revenue generating process as: 
 

28. �� = MN� + M��� + �� 
 
So, both the intercept (MN�) and the slope (M��) evolve slowly with time, perhaps rising in some 
cases and falling in others. Linear local trends are special. More general mathematical forms tend 
to characterize local trends.  
 
Practically, use the following Stata code to take a look at the graphs of the data in Panel A, 
Figure 1:  

> tsline allcrime || lfit allcrime t in 1/18 || /// 

                  lfit allcrime t in 22/39 || /// 

                  lfit allcrime t in 40/60 || /// 

       lfit allcrime t in 61/84 

 
The output is reported in Figure 9. The distinct local linear trends are readily visible. From t = 1 
to t = 18, there is an upward trend; from t = 22 to t = 39, there is an upward trend with a lower 
slope than in the previous period; from t = 40 to t = 60 there is the strongest upward trend in the 
set of blocks; and from t=61 to t=84, there is a downward trend. 
 



Figure 3-9: Local Trends in Data (Panel A, Figure 1) 

 

 

Operationally, it is appropriate to forecast revenue series with this type of behaviour by applying 
the simple exponential smoother twice to the series. A good reference for this method is 
Montgomery, Johnson, and Gardiner (1990, Ch.4; Appendix 4A)11. For the first round of 
smoothing, the applicable equation is, as before:  
 

29. �� = (�� + I1 − ()���� 
 

Thus, for the second round, the forecast equation is 
 

30. ��I�) = (�� + I1 − ()����
I�)  

 

Clearly, this forecast can be written as: 
 

31. ��I�) = (I�� − ����
I�) ) + ����

I�)  
 

The term �� − ����
I�)  is measure of the effect of the time trend at time t. Thus, equation (31) 

essentially forecasts the effect that the time trend has on the revenue series ��.  
 

To isolate the trend doing all of this in Stata, use the following code: 

>tssmooth exp sallcri=allcrime, forecast(2) 

>tssmooth dexp dsallcri=allcrime, forecast(2) 

>tsline allcrime sallcri dsallcri, scheme(s2mono) 

                                                           
11 Montgomery, D. C., Johnson, L.A., and Gardiner, J.S. (1990). Forecasting and Time Series Analysis, 2nd ed. New 
York: McGraw-Hill. 



The difference from the earlier code is deliberate. The analyst could try different values for 
and then pick the one that appears to best fit the data. However, we have left out the parms() 
option and let tssmooth exponential and tssmooth dexponential find the respective values of ( 
that minimize the root mean squared error (RMSE) automatically for each method. That is, for 
each chosen ( the method computes the sum of the squared deviations from the forecasted trend, 
and takes the square root. Then, it picks the one that gives the smallest RMSE. If you run the 
code with the data in Figure 1, you will find that the simple exponential smoother used ( = 0.18 
and the double exponential smoother used ( = 0.006. The graphing code scheme(s2mono) 
forces the program to use dashed lines rather than colour to distinguish the various graphs. 
Figure 10 shows the comparative results generated, against the actual data. 
 

The two smoothers have produced different fits and neither does a great job of fitting the data 
overall. The simple exponential smoother has a smaller RMSE (13.09 versus 13.26). The 
forecast made by the double-exponential smoother grows steadily over time, whereas the simple 
exponential smoother's forecast rises up to t=60 and then declines after that. The forecasts differ 
because the double exponential smoother includes a time trend, which here is predicted to be 
positive overall, whereas the simple exponential smoother does not attempt to account for the 
time trends.  
 

Figure 3-10: Comparative results of simple and double exponential smoothing 

 

 

3.2.1.9 Holt-Winters Forecasting 
Like double-exponential smoothing, Holt-Winters smoothing can be used when forecasting a 
series that can be modelled as a time trend, with the constant term and the time-slope varying 
over time and exhibiting local trends. The methods are based on the work of Winters (1960)12 
and Holt (2004)13.  

                                                           
12 Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science 6: 
324–342. 
13 Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International 
Journal of Forecasting 20: 5–10. 



Equations (29) and (30) use the same smoothing parameter, (. Holt-Winters forecasting allows ( 
to change in equation (30), the second updating of the forecast. So, it is essentially a 
generalisation of the double exponential smoother with two smoothing parameters rather than 
one. It produces a budget forecast of the form: 
 

32. ��"�X = �� + [�� + �� 
 

where, ��\ is the forecast of the original series �� using simple exponential smoothing and an 
optimal smoothing parameter, (; where both the intercept (��) and the slope ([�) evolve slowly 
with time; and where the smoothing and forecasting with equation (31) uses a smoothing 
parameter coefficients that might differ from (.  
 

The smoothing equations are therefore: 
33. �� = (�� + I1 − ()���� 34. ��I�) = M�� + I1 − M)����

I�)  
 

Now, consider a time series �� that exhibits a time trend ��, which describes how the series 
changes in general over time, and a local linear trend *�, which describes the average value of 
the time series for time periods in the neighborhood of time �. Since *� is a mean that drifts over 
time, it is nothing but the model-generated value of �� in equation (32). And, since �� is the 
general description of how the series changes over time, it can only be a description of the 
evolving slope [� in equation (32). Once the smoothing parameters ( and M are chosen optimally 
from equations (33) and (34), in particular to minimize the root mean-square-error, then 
Bowerman, O’Connell, and Koehler (2005)14, and the classic work of Harvey (1989)15, provide 
nice proofs that the updating or forecasting equations for the local and global trends are as Holt 
(2004) proposed: 
 

35. ��"�X = �� + [� 
36. �� = (�� + I1 − ()I���� + [���) 
37. [� = MI�� − ����) + I1 − M)[��� 

 

Observe that these (recursive) equations take the form of simple exponential smoothers, except 
that ���� + [��� is used in equation (36) instead of only ����. The trend at � − 1, i.e., [���, 
indicates how much the time series can be expected rise (or fall depending on direction) between 
� − 1 and � because of the trend effect. The term ���� + [��� in equation (36) accounts for the 
total effects of both the trend and the local effects between � − 1 and �. The change in the local 
level between � − 1 and �, i.e., �� − ����, is used to update the forecast of the trend component 
at time �. It should already be clear that the updating equations for double-exponential smoothing 
are special cases of these equations, with ( = M.  

                                                           
14 Bowerman, B. L., O’Connell, R.T., and Koehler, A.B. (2005). Forecasting, Time Series, and Regression: An 
Applied Approach. 4th ed. Pacific Grove, CA: Brooks/Cole. 
15 Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge 
University Press. 



To use the two equations (35 and 36), we are going to need initial values �N and [N, much as we 
needed them for simple exponential smoothing. Because of the presence of a time trend, there is 
an intuitively attractive way to get them. Run a simple OLS regression of �� on time, �, and, 
having generated the coefficients, set �N to the value of the estimated constant term of the 
regression and set [N as the estimated slope coefficient. 
 
Then, after computing the series �� and [� with equations (35) and (36), it only remains to apply 
the forecasting component of equation (32) to get the forecast for ��"�, called a one-step-ahead 
forecast, as: 
 

38. ��"�X = �� + [� 
 
In general, to get the ℎ-step-ahead revenue forecast at time �, that is, the forecast for ��"^, use: 
 

39. ��"X̂ = �� + [�ℎ 
 
As usual, we use Stata’s powerful routines to generate the forecasts. The general syntax to use is: 
The most important aspects of the Stata syntax are:  

>tssmooth hwinters [type] <newvar> = <exp> [if] [in], [parms(#a #b) s0(#L #T) 

forecast(#)] 

 
As before, the analyst can supply parameters to the code using parms(#a #b) to specify the 
smoothing parameters 	( and M. The forecast(#) element in the code will produce forecasts for # 
periods beyond the end of the sample. The element s0(#L #T) allows the analyst to provide the 
starting values �N and [N. Practically, the results in Figure 12 were generated with the following 
code: 

>tssmooth hwinters hwalcrm = allcrime, parms(.5 .5) 

>tsline allcrime sallcri9 hwalcrm,scheme(s2mono) 

 
The Holt-Winters forecasts with parms(.5 .5) are mostly similar to those produced by the simple 
exponential smoother with parms(.9), and the graph in Figure 11 demonstrates that.  
 



Figure 3-11: Holt-Winters and Simple Exponential Smoothing Compared 

 
 

3.2.1.10 Seasonal Effects with Holt-Winters 
There are fairly straightforward ways to adjust the Holt-Winters Methods to cater for the 
seasonal effects evident in the revenue data, especially as that relates to their effects on the 
timing of budget releases. The earlier distinction between trend and seasonal effects should be 
recalled, along with the distinction between multiplicative and additive representations of the 
data. 
 
Additive Seasonal Effects with Holt-Winters 
If there is graphical justification for treating the seasonal effects as additive effects, then the 
methods used extend the above analysis quite easily. Let �� be a variable that measures the 
seasonal effects at time �. The first thing to observe is that the additive method is applicable to 
data whose seasonal effects can forecasted with a model such as: 
 

40. ��"_X = �� + [�` + ��"a + ��"a 
 
Comparing with equation (32), in addition to the non-seasonal ��, the local level component, and 
[�, the global time trend component, the forecasting model now has ��, the seasonal effect. 
 
Let b define the period of the seasonal effects. The updating equations are adjusted accordingly 
to: 
 

41. �� = (I�� − ���c) + I1 − ()I���� + [���) 
42. [� = MI�� − ����) + I1 − M)[��� 
43. �� = dI�� − ����) + I1 − d)���c 

 



In this case, �� represents the local level of revenues after removing any seasonal effects in the 
data. That is, when data on Xt becomes available, �� is updated using �� after subtracting the 
seasonal effects. The evident strategy is that since no estimates are available (ex-post) for the 
seasonal effect of period t, the seasonal effect for the same period one year ago, i.e., ���c, is used 
in its place. In the equation for ��, the estimated seasonal effect is updated using �� − ����, 
which is to say the difference between the realized �� and the deseasonalized local trend ����. 
Again, seasonality is captured in the equation for �� using ���c, which is to say the seasonal 
effect for the same period one year ago.  
 
As before, after computing the series ��, [� and �� with equations (41), (42) and (43), it only 
remains to apply equation (40) to get as the forecast for ��"a, to get the ̀-step ahead at time � or 

if you like the forecast for ��"a as: 

 

44. ��"_X = �� + [�` + ��"a�c 
 
Note that the period of the seasonality is taken into account in the forecast through ��"a�c. 
 
Multiplicative Seasonal Effects with Holt-Winters 
If there is graphical justification for treating the seasonal effects as multiplicative effects, with a 
slowly adjusting trend component, then one can represent the forecasting model as: 
 

45. ��"_X = I�� + [�`) ∗ ��"a + ��"a 
 
In generating the updating or current period forecasting equations for the local and global trends 
and the seasonal effects, the essential adjustment is to normalize rather than subtract in order to 
remove seasonal effects or local (deseasonalized) trend effects from the realized data. Thus, the 
corresponding updating equations are 
 

46. �� = (I e/
�/3f

) + I1 − ()I���� + [���) 
47. [� = MI�� − ����) + I1 − M)[��� 

48. �� = d g e/
A/3h

i + I1 − d)���c 
 
It follows immediately that, after computing the series ��, [� and �� with equations (46), (47) and 
(48), it only remains to apply equation (45) to get the ̀-step-ahead forecast at time �, or if you 
like the forecast for ��"a, as: 

 

49. ��"_X = I�� + [�`) ∗ ��"a�c 
 



It is clear that incorporating seasonality increases the complexity of the forecasting model and 
the data requirements. Typically, about 4 years of monthly revenue data would be needed for its 
use. Global and local trends are estimated along with seasonal parameters. However, with 
available computer software, the challenge is not in the estimation itself. It is in the 
understanding of the method. 
 
3.2.1.11 Box-Jenkins ARIMA Forecasting (Box and Jenkins, 1976)16 
Box-Jenkins autoregressive integrated moving average forecasting (ARIMA) is included in this 
manual for completeness. ARIMA is one of the most widely used methods of forecasting. The 
main reason is that statistical confidence intervals can be constructed around its forecasts, so that 
the precision of the forecasts can be ascertained. Further, however, ARIMA model are very 
useful when it is necessary to understand how exogenous shocks in one period, �, influence 
revenue and expenditure outcomes in the future, � + 1, � + 2, and so on. There are three 
concepts in the method:  
 
Autoregressive: This describes the component of the model that represents any correlation 
found between the value of the revenue series at time t and some linear combination of the 
values at times t - 2, t - 1, t + 1, and so on. If the correlations are found, the data must be 
transformed by differencing (and maybe by adding a trend) in order to use applicable statistics. 
Differencing involves subtracting ���� from �� for all observations. In general, the 

autoregressive component forecasts the future value ��"�X using j past observations ���k and the 

following forecast model of a process of order p: 
 

50. ��\ = (N + (����� + (����� +⋯+ (k���k 

 
The (k� are the estimated parameters used in the forecasts. 

 
Integrated: This refers to a summation process that translates the calculations of the model, 
which are based on differences, back to a level variable that can be interpreted intuitively. 
Suppose that on observation of the tax collections for the last month tax officials warn that 
collections for the next year will be substantially lower than previously forecast. This is a 
suggestion that the average around that time will be substantially lower than now and suggests 
non-stationarity by the tests suggested above. The forecaster must care about this, because it has 
a direct bearing on how the forecast has to be done. Nonstationary revenue series are much more 
difficult to analyse and forecast that stationary revenue series.  
 
  

                                                           
16 Box, G.E.P and Jenkins, G.M. (1976). Time Series Analysis, Forecasting, and Control. San Francisco: Holden-
Day. 



If a revenue series is stationary, then all the standard methods of cross-sectional statistics, such 
as the central limit theorem and the consistency of estimators, generalize in straightforward ways 
to the analysis of the revenue series. However, if the revenue series is nonstationary, then the 
distributions of estimators are much more complex and are not simple generalizations of the 
familiar distributions of estimators for the stationary series. The most common approach to such 
non-stationary revenues, and the one adopted by ARIMA, is to first transform the series so that it 
is stationary. This is usually done by differencing (and perhaps by adding a trend). Then, to 
understand the calculations, it is necessary to recover the forecasted revenue in level form so that 
it can be interpreted. This is the purpose of ‘integration’ or ‘summation’ and the sum must exist 
if the method is to work. 
 
Moving average: This refers the component of the forecasting model that is similar to those 
described in previous sections. That is, the moving average component of ARIMA forecasts 
based on previous forecasting errors. For �� the forecast error at time �, the moving average 
component of a forecasting model for process of order m is: 
 

51. ��\ = MN + M��� + M����� +⋯+ Mk���n 

 
The autoregressive and the moving average components combine to form autoregressive moving 
average (ARMA) models. So, it should be clear that ARMA models assume a stationary data 
series before first differencing or the inclusion of a time trend. If differencing and the addition of 
a trend is necessary, then the issues of integration and summability arises and the forecast models 
becomes the Box-Jenkins ARIMA model. 
 
The number of autoregressive and moving average lags in an ARIMA model is referred to as 
ARIMA( p,d,q), for p the length of the autoregressive lags, d the number of times the data must 
be differenced in order to make the series stationary, and q the number of lags in the moving 
average component. So, if d=0, then the ARIMA forecasting model is an ARMA(p,q) forecasting 
model.  
 
If high-frequency revenue data are available, such as monthly or quarterly data, then the 
forecasting model should take account of seasonality. The method can address seasonality by 
taking into account the autoregressive or moving average trends that occur at different points in 
time. In the literature, the language that will be encountered when incorporating seasonality into 
the ARIMA model is expressed as ARIMA(p,d,q)(P,Q), for P the number of seasonal 
autoregressive lags and Q the number of seasonal moving average lags.  
 
  



There are three steps in Box-Jenkins ARIMA forecasting:  
Step 1: Model identification. Here, the revenue forecaster must decide whether the time 
series is described by an autoregressive process, a moving average process, or both. 
Graphical representation of the data or several statistical methods are used for this purpose.  
 

Step 2: Model estimation and diagnostic checks. Here, the forecaster must check that the 
specified model is correctly identified. There are a wide variety of diagnostic tests used for 
this purpose.  
 

Step 3: Forecasting. If the model passes the diagnostic tests, the forecaster then forecast the 
revenues. The forecasts are produced along with confidence intervals - a measure of their 
accuracy  

 

The confidence intervals are also a check on the validity of the revenue model and the usefulness 
of its forecasts. If a forecast is generated that is of dubious value in budgeting, but it is predicted 
with a high degree of confidence, then the whole exercise should be redone.  
 

3.2.1.12 Assumptions of Box-Jenkins ARIMA 
To forecast revenues with ARIMA, two assumptions must be satisfied.  

1. The data series must be at least 50 observations long (Newton, 1988).17 For the 
partner countries, this is a major obstacle to the use of the method. Most countries 
report certain key tax and expenditure data on an annual basis and most of the series 
available date to no earlier than 1970.  

2.  The data series must be stationary. As indicated above, this means that the revenue 
series must have a constant mean and constant variance. If this condition is not met, 
the forecasts can be spurious.  

 

If the series is too short, then the known statistical methods do not apply and the forecasts 
become unreliable. If the series is non-stationary, the data series needs differencing. It may also 
be necessary to add a time trend when doing the forecasting. A linear trend can be added to make 
the series stationary if the non-stationarity in the series is characterized by a mean and variance 
that change by a constant amount over time. If instead the data is first-difference non-stationary, 
then first differencing of the data will render the series stationary. These decisions are made 
during the model identification process. Statistical software are now available to make the 
decisions straightforward. The constant-variance component of the second assumption of 
ARIMA models is referred to as homoscedasticity. If the variance around the mean is great even 
after differencing, the assumption fails and the revenue series is heteroscedastic. Several 
remedies exist for this problem, including data transformation using natural logarithms, square 
roots, or cubed roots, and the like. 

                                                           
17 Newton, H.J. (1988). Timeslab: A Time Series Analysis Laboratory. Pacific Grove, CA: Wadsworth & 
Brooks/Cole Publishing. 



3.2.1.13 Software and Simplicity 
It has been emphasized that powerful modern statistical software, such as Stata 14, are available 
to implement these methods, so we have focused on clarification of the ideas involved. It should 
also be emphasized that all the methods described so far are simple special cases of more modern 
time series methods described in the references cited, such as the ARIMA representations of data 
and related analytical methods. The general lesson from the methods so far is that once the 
parameters used in a representation of the data can be estimated reliably, the PER Team can 
proceed to make forecasts. With their greater demand for detail, these modern methods are also 
far more flexible that the ones mentioned so far, and can be far more accurate forecasters that the 
exponential smoothers mentioned above.  
 

So why emphasize these simple forecasting methods in the manual? We illustrate the answer by 
reference to the aforementioned ARIMA methods. A PER Team from the member countries of 
the project will tend to find that ARIMA methods are data hungry – large-sample- methods. 
Caribbean countries have major challenges on this front. Just as important, application of 
ARIMA methods give very accurate forecasts if, given large enough samples, the ARIMA model 
is well-specified. However, even relatively modest misspecification of an ARIMA model will 
yield very inaccurate forecasts because the number of parameters that must be correctly 
estimated is quite large. Exponential smoothing models estimate only a few parameters, which 
introduce less risk of error and can therefore be adequate for the needs of a PER Team, even 
though they are not as accurate as a well-specified ARIMA model. They also require 
significantly less time and much less exploratory analysis to get right than do ARIMA models. 
For this reason, single variable and single equation methods are the backbone of revenue 
forecasting as well as general forecasting of macroeconomic variables that are exogenous in a 
system-wide macroeconomic model (Annex 2). 
 

When doing a PER, quite a few single equation forecasts of time series, sometimes hundreds of 
them, are needed to understand the trajectories of the system and its performance. This is 
especially true when dealing with many sectors and many interests and stakeholders, such as in 
education, health and social welfare. Use of ARIMA to forecast a few variables might be 
manageable, but this can become quite demanding on the Team’s time if hundreds of series must 
be forecasted, leaving the use of the exponential smoothers and the only viable strategy. This 
type of reliance on simplicity is reinforced in the remainder of the Manual. 
 

3.2.1.14 Causal Models 
Equation (17) above is an example of a member of a wide class of causal regression models 
employing a time trend that is widely used for aggregate revenue and expenditure forecasting. 
These are especially important for forecasting the aggregate taxes. This aggregate could be used 
in forecasting the debt to GDP ratio in Equation (6) of the illustrative macroeconometric model 
of Annex 2, incorporating the effective consumption capacity. An aggregate tax forecast can be 
used to set the overall size and structure of revenues on which the budget will be based.  



It provides policy makers and fiscal planners with estimates of the gross resources that are likely 
to be available from the tax base, the extent of borrowing that will be needed to support any 
given level of expenditure, the necessary use of accumulated reserves, or the need for monetary 
policy measures to balance the budget. It also informs about what fiscal actions are sustainable 
and hence how to balance fiscal policy to address the problems in the balance of payments and 
hence foreign debt.  
 

In addition to allowing the analysis of data with additive seasonality, the class of forecasting 
models tend to work well for revenues that are heavily influenced by macro and sector-level 
economic factors, such as business license fees, income taxes, and VAT, and the like. The 
macroeconomic factors most commonly used to explain such taxes are population, income, and 
price.  
 

3.2.1.15 Using Time Trends as Proxy for Technical Change in Revenue Forecasting 
First, consider the generalization of the forecast equation (17) by using the time trend as a proxy 
for technical progress. In partner countries, most of the technological change that affect taxes is 
truly exogenous, generated by the rest of the world, so the result will also have a strong causal 
interpretation. The wide class employing a time trend to forecast aggregate taxes is: 

52. %�L = MN + M�� 
53. %�L = MN + M�� + M��� 

54. %�L = MN + M�� + M�K� + MOKO + MPKP 
55. %�L = MN + M�� + M��� + MOK� + MPKO + MoKP 

 

Here, M� is the parameter of the linear trend. In equations (53) and (55), M� the parameter of the 
quadratic trend, a very plausible option since technical progress is usually expected to be logistic 
and the quadratic picks up elements of that process. The estimated values of the parameters of 
the quarterly dummy variables would reveal the average level of the dependent variable during 
the quarter. Testing the equality of the dummy coefficients can reveal whether there are 
significant differences in the average level of the revenues across the seasons. All of these 
models can estimated with ordinary least squares regression (OLS). The forecasts can be done 
independently and then incorporated into Equation (6) of Annex 2.  
 

Equation (54) has already been estimated above with the data in Panel B, Figure 1. The Stata 
codes and results for equation (55) are provided below. 

>g mnthsq=month^2 
>xi:reg iva month2 mnthsq i.moy 
 

The first line of code creates the variable �� from the months listed in sequence. The second line 
includes this new variable in the estimation model along with � as before. Table 2 shows that the 
addition of �� seems to have improved the representation of the trend and seasonal effects better 
than equation (55) as reported in Table 1. First, the adjusted J� is better at 76% of all the 
variation in the data. Second, the representation now picks up the importance of March as a 
month when international visitor arrivals increase. Moreover, March is now picked up as the 
month with the highest tourism arrivals, essentially linked to the Carnival season. Second, it also 
picks up the fact that the second tourism season runs from May to July, rather than simply June 
and July. 



 

Table 3-2: Stata-generated Results with Diagnostics for Equation (51) 

 

 
3.2.1.16 GDP-based Forecasting of Aggregate Tax Revenue 
The main flaw in the approach through time and exogenous technology is that the size and 
structure of the tax base have not been considered. Policy must be concerned with all three 
variables. Generally, one would expect to find a close relationship between taxes and their bases 
in a revenue forecast.

 
 For example, the amount of income tax should depend on the amount of 

taxable income and the tax rate, with the taxable income dependent on the GDP or its 
components. Thus, instead of using a time-trend, the GDP or its components can serve as the 
independent variable in a gross revenue model, since the GDP and its components comprise the 
tax base.  
 
 
If a sufficiently long time series data are available, then for p the aggregate value-added and � 
the total taxes, the aggregate form of the forecast model of gross taxes is simply: 
 

56. %�L = MN + M�Q� 

                                                                              

       _cons     15.38287   3.400023     4.52   0.000     8.601735      22.164

    _Imoy_12    -12.42433   2.894503    -4.29   0.000    -18.19724    -6.65143

    _Imoy_11    -12.48529   2.894866    -4.31   0.000    -18.25891   -6.711658

    _Imoy_10    -13.63285   2.895444    -4.71   0.000    -19.40763   -7.858072

     _Imoy_9    -4.558466   2.896222    -1.57   0.120     -10.3348    1.217866

     _Imoy_8    -4.870696   2.897189    -1.68   0.097    -10.64896    .9075644

     _Imoy_7    -14.34954   2.898339    -4.95   0.000     -20.1301   -8.568988

     _Imoy_6    -11.65215   2.899672    -4.02   0.000    -17.43536   -5.868936

     _Imoy_5    -6.088515   2.901194    -2.10   0.039    -11.87476   -.3022664

     _Imoy_4     -1.70864   2.902914    -0.59   0.558     -7.49832    4.081039

     _Imoy_3     6.223188   2.904848     2.14   0.036      .429652    12.01672

     _Imoy_2     2.142686   2.907016     0.74   0.464    -3.655174    7.940547

      mnthsq     .0090227    .001124     8.03   0.000     .0067809    .0112644

      month2    -.9786318    .098661    -9.92   0.000    -1.175405   -.7818587

                                                                              

         iva        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    10237.7856    83  123.346814           Root MSE      =  5.4149

                                                       Adj R-squared =  0.7623

    Residual    2052.46652    70  29.3209503           R-squared     =  0.7995

       Model    8185.31904    13  629.639926           Prob > F      =  0.0000

                                                       F( 13,    70) =   21.47

      Source         SS       df       MS              Number of obs =      84



Here both variables have been deflated and are in natural logarithms. Then, the estimated 
parameter M� is also a measure of the elasticity of response of total taxes to changes in gross 
value-added. Elasticity measures the responsiveness of budget variable �� to changes in p�. For q 

the change (or differential) operator, it is normally defined as: �e,r = s�/
st/

. If q%� = qQ�, so that 

the budget category changes at the same rate as the underlying variable p�, then elasticity is equal 
to 1. If q%� > qQ�, then the elasticity will be higher than 1 and if q%� < qQ�, then the elasticity 
will be lower than 1. Elasticities other than 1 reflect sustained structural changes within either 
the budget category or the underlying variable.  
 

In addition to the availability of time series data, this approach using elasticity (equation 56) 
must take into account two characteristics that are typical of the stationary %� with Q� data used: 
(i) non-stationarity, and (ii) cointegration between gross revenues and the GDP. Nonstationary 
processes have been characterized above. Forecasting with non-stationary %� with Q� might work 
just because the two variables grow over time and are highly correlated; the more highly 
correlated the better. However, the forecast equation cannot be used to explain why it is good 
policy to grow Q� as a way to grow %�. Such a use in the budget process requires that %� and Q� 
be cointegrated. Two variables are said to be cointegrated when the following conditions apply:  

a. The two variables are non-stationary in the specific sense of being some type of 
random walk as described by equations (5), (7) or (8) above. This means that each 
variable must have a stochastic trend and therefore can be made stationary by first 
differencing. Such variables are integrated of order 1, I(1), as described in the above 
section on Box-Jenkins methods. 

b. The coefficients MN and M� can be identified such that  �,� is stationary in the 

regression (equation 57): 
 

57. %�L = MN + M�Q� +  �,� 
 

Relative to equation (1), equation (56) and equation (57) make the strong assumption that no 
discretionary changes have been made in the tax rate or tax base. Since discretionary changes are 
normally made, two options must be considered. One is to adjust the above forecast model to 
control for the effects of discretionary changes in the tax rate. Retaining the seasonal effects, let 
	s be a categorical variable for the period (say years) when the relevant discretionary change in 
the tax rate or the tax base is in effect. This dummy variable is represented by the value of "0" for 
the years before the policy and a value of "1" for the years of after the policy comes into effect 
and until it expires. For example, a tax amnesty to encourage payment of taxes should be 
included as a categorical variable for the period of the amnesty, say 2 years. The dummy variable 
would be given a value of 1 for each of the two years. Then, the necessary forecast model should 
be: 
 

58. %�L = MN + M�Q + M�	� + MO	O + MP	P +⋯+ Ms	s + Mst	s ∗ Q	 



The income elasticity of the tax policy is then M� + Mst. This option can work if sufficiently long 

time series data are available, so that the coefficients can be reliably estimated.  
 
For an example, we use the series in Figure 1. We suspect that crime has something to do with 
international tourism arrivals. We are also interested in the elasticities, so both crime and 
international arrivals are transformed into their logarithms. Then, we use Stata to check. Run the 
following code first: 

>xi:reg liva i.moy*lcrime 

 
The code would include all the dummy months and all their interactions with lcrime. If none of 
the interactions has a non-zero coefficient, then it is better to run: 

>xi:reg liva lcrime i.moy 

 
The result is reported in Table 3. The elasticity of IVA to crime is -0.25. That is, every 1% 
increase in crime leads to a 0.25% decrease in IVA. 

Table 3-3: Illustration of an explanatory regression model 

 

                                                                              

       _cons     4.544897   .5269474     8.62   0.000     3.494193      5.5956

    _Imoy_12     -.371671   .1272601    -2.92   0.005    -.6254205   -.1179216

    _Imoy_11     -.321834   .1330555    -2.42   0.018    -.5871393   -.0565288

    _Imoy_10    -.3789734   .1310024    -2.89   0.005    -.6401848   -.1177619

     _Imoy_9    -.0877231   .1259187    -0.70   0.488    -.3387978    .1633517

     _Imoy_8    -.0644664   .1299163    -0.50   0.621    -.3235122    .1945793

     _Imoy_7    -.4502495   .1262515    -3.57   0.001    -.7019878   -.1985112

     _Imoy_6    -.3537371   .1262304    -2.80   0.007    -.6054334   -.1020409

     _Imoy_5    -.1029395   .1278864    -0.80   0.424    -.3579377    .1520586

     _Imoy_4     .0238481   .1283472     0.19   0.853    -.2320689    .2797652

     _Imoy_3      .195576   .1246141     1.57   0.121    -.0528976    .4440495

     _Imoy_2     .1031455   .1253712     0.82   0.413    -.1468376    .3531287

      lcrime    -.2494314   .1333408    -1.87   0.066    -.5153054    .0164426

                                                                              

        liva        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    8.14166121    83  .098092304           Root MSE      =  .23304

                                                       Adj R-squared =  0.4464

    Residual    3.85592213    71  .054308762           R-squared     =  0.5264

       Model    4.28573908    12  .357144923           Prob > F      =  0.0000

                                                       F( 12,    71) =    6.58

      Source         SS       df       MS              Number of obs =      84



Finally, regarding the aggregate tax forecasts, at least one exogenous macro variable, such as the 
logarithm of population size (j�j), should be added directly to all the aggregate tax forecast 

equations above. For example, equation (58) should be modified to: 
 

59. %�"�w = MN + M�Q�"� + M�jxk,�"� + M�	� + MO	O + MP	P +⋯+ Ms	s + Mst	s ∗ Q	 
 

Here too, we are working with a special case of equation (1). Thus, in building a forecast of 
aggregate revenues with any of these GDP-based forecast equations, it would be necessary to 
forecast the GDP or the GDP growth rate at time � + 1. In the case of equation (58) it would also 
be necessary to forecast the population at time � + 1. The population can be forecasted using any 
of the methods presented in Section 4 above. 
 

When long enough time series data are not available, one approach is to forecast these variables 
independently, without using a macroeconometric model featuring multiple dimensions. 
Independent forecasts work well (Auerbach, 1999; Koirala, 2014).18 For independent forecasts of 
the GDP and GDP growth rate, uninfluenced by the path of other variables in the economy, the 
required approach is as follows: 
 

60. Q�"� = ln p�"�\  

61. p�"�\ = p� +
I{|}r/)
�NN 	 

62. �|p = �
~∑

Ip��p�−1)
r/3h

∗ 100~
�;�  

 

The process is recursive. To get the forecast of Q�+1: 
1. First, forecast the GDP growth rate as the average over the selected number of years, 

and convert to a percentage. 

2. Then, multiply the forecasted percentage growth rate and the GDP for year �, and 
reconvert to a proportion.  

3. Next, add the result to the GDP of year �. 
4. Then, take the natural logarithm of the forecast and apply the result to get the forecast 

of aggregate revenues. 
 

Note that �|Q is just an overall average covering the entire data period arbitrarily chosen, say with 

� = 5, so the time series does not have to be long. However, the average growth rate can also be 
independently forecasted using any of the methods specified in Section 4. Use of equation (62) 
assumes that discretionary policy has zero impact in equation (1). In these cases, the influence of 
discretionary policy can be added by rewriting equation (62) as: 
 

63. �|p = �
~∑ TIp��	
�−1)

r/3h
− 1V ∗ 100~

�;�  

                                                           
18 Auerbach, A J. (1999). "On the Performance and Use of Government Revenue Forecasts." University of 
California, Berkeley and NBER, USA. Koirala, T.P. (2014). Government Revenue Forecasting in Nepal. NRB 
Economic Review, Nepal Rastra Bank. 



Instead of an independent forecast, the forecast of p�"� can be done with a macroeconometric 
model. The best approach is to update and use the model specially developed for preparation of 
the budget to reflect the role of effective consumption capacity. The next best alternative is to 
use a model such as that recommended in Annex 2. The output of Equation (9) of this model is 
already in the form of Q�, so a one-step-ahead forecast with the estimated equation will yield 

Q�+1. As illustrated by the model, macroeconometric forecasts are structured similar to the 

regression equations set out above, but can include estimates of influential and consequential 
change of other key variables shaping the budget: the debt to GDP ratio, the unemployment rate, 
the CPI, per capita income, and the effective consumption capacity per dollar of imports. More 
complex events and relationships can be considered and dynamic feedback can be incorporated 
using the output from one equation to inform adjustments in another equation. The types of 
revenue for which macroeconometric forecasts are most useful include those for which 
economy-wide elasticities can be computed: (i) corporate tax, (ii) personal income tax, (iii) real 
estate taxes, (iv) value-added or sales taxes, and (v) user fees and charges. 
 

It is important to emphasize here that qualitative judgement is an integral part of forecasting with 
macroeconometric models. Macroeconomic forecasts are important in framing forward-looking 
medium-term macroeconomic policy and the budget. The model used must capture the salient 
features of the economy in a tractable framework that takes account of data availability. It must 
also take account of key external influences on the economy, particularly continual structural 
change and technological advances abroad and general inherent randomness. Judgement 
necessarily plays an important role in the preparation of forecasts with such variables and hence 
with models incorporating them. The use of a macroeconomic model for forecasting is illustrated 
here, using Stata code. The language of macroeconometric forecasting is as follows: 

1. A macroeconometric forecasting model is a system of equations whose interactions 
jointly determine the outcomes of one or more endogenous variables. The term 
endogenous variables contrasts with exogenous variables, the values of which are not 
determined by the interactions of the system’s equations. 

2. A macroeconometric forecasting model has  
i. One or more stochastic equations that describe the behaviour of the endogenous 

variables. 
ii.  Zero or more non-stochastic equations (identities) that usually describe the 

behaviour of endogenous variables that are based on accounting identities or 
summation conditions. 

iii.  Zero or more exogenous variables that must be declared. 
iv. Equations that are identified, in the sense that there is enough information to 

estimate the structural equations that have been specified. 
v. Stationary residuals 

3. A macroeconometric forecast model can produce forecasts under alternative scenarios. 

4. ‘Solve the model’ and ‘forecast with the model’ mean the same thing. 



We have concentrated on revenues so far, so we choose to illustrate forecasting of government 
spending with a macroeconometric model. The government expenditure forecast is needed to set 
the overall budget ceiling, taking into account the development path of the economy. In such a 
model, the share of government spending in GDP must be treated as endogenous. Substantively, 
it should depend on the success of the economy in solving its fundamental problem of growing 
the effective consumption capacity per dollar of foreign exchange, on how the sectors are 
restructuring, and on how the technology of the economy is evolving. The success of the 
economy in solving its development challenge depends partly on how the technology of the 
economy is adjusting relative to that of its main trading partner, here assumed to be the US 
economy. Inflation is not merely a by-product in this process. It influences the rate of 
development of the technology of the economy. Here is a dynamic statistical forecasting model 
that can be used with the GDP forecast equations (60-62) to forecast aggregate government 
expenditure: 
 

64. $����qj = (N + (�$j� + (�$��ℎ�7� + (O$j���� + (P$ %jj�j��� + (o$�j!����� +
(�$����qj��� + (�$�$���7���� +  � 

65. $�j!�� = MN + M�$� �#� + M�$ %7�j + MO$q ���j2 + MP$ %!ℎ� + Mo$�[#�� +  � 
66. $!j7 = dN + d�$�2 + d�$�qjq � + dO$������� + dP$�j!�� + do$ %!ℎ� + d�$�[#�� +

 O 
67. $�$���7� = �N + ��� +	��� !ℎ2 + �O� !ℎ3 + �P$!j7 + �o$�[#�� + ��$�[7$$ +

��$�[#����� + ��$������ + ��$���� + ��N$������� +  P 
 
The model has four interacting equations, The variables are all in logarithms to allow response 
elasticities to be measured: 

$����qj – the logarithm of the ratio of government spending to GDP 
$j� – the logarithm of the investment deflator, which is a proxy for the price of capital 
$��ℎ�7� - the logarithm of the ratio of other economic activity to the total of mining and      

manufacturing activity 
$ %jj�j - the logarithm of exports per capita 
$�j!�� - the logarithm of effective consumption per dollar of imports 
$�$���7� - the logarithm of the capital per capita, which is a proxy for the capita-labour 
ratio 
$� �#� - the logarithm of the ratio of official reserves to government spending 
$q ���j2- the logarithm of the ratio of the domestic capital-labour ratio to the capital-

labour ratio of the USA 
$ %7�j- the logarithm of the ratio of exports to imports 
	$ %!ℎ� - the logarithm of the exchange rate 
	$�[#��	- the logarithm of the ratio of US Treasury bill rate to local treasury bill rate 
$�2- the logarithm of the money supply 
	$�qjq �- the logarithm of the GDP deflator 



$���� – the logarithm of the savings rate  
$�[7$$ – the logarithm of the local treasury bill rate  
� – linear time-trend used  
� !ℎ2 - the quadratic of the time trend 
� !ℎ3 – the interaction of the linear time trend and the logarithm of the time trend  

 

This expenditure forecasting model can be adjusted and estimated to forecast government 
spending in each of the partner countries, using the data now publicly available. Data are 
available from 1970 to 2013. Further, if other official data are available, the method can be 
further developed. The forecast equation (64) can be estimated independently with dynamic OLS 
regression. However, an approach that yields the most efficient estimates of the parameters is to 
estimate all together using 3SLS. Here is some simple Stata code for this purpose, written 
without macros: 

>reg3 (lgovgdp l2.lexppop l.lapcon lpk l.lpk lothmin l.lgovgdp l.lklratio) 
/// 
(lapcon lothmin lresus leximp ldevgap2 lexchr ltbusa l.lgovgdp l.lsavr) /// 
(lcpi lm2 lgdpdef lapcon lexchr ltbusa l.lsavr) /// 
(lklratio t tech2 tech3 lcpi ltbusa ltbill l.lgov lsavr l.lsavr l.ltbusa), 
/// 

endog(lgovgdp lapcon lcpi lklratio) /// 
exog(lothmin lsavr t tech2 tech3 lresus ldevgap2 ltbusa /// 
lm2 lgdpdef lexchr lgov leximp lexppop lpk ltbill) 
>predict reseq1,equation(#1) residuals 
>tsline reseq1 
>predict reseq2,equation(#2) residuals 
>tsline reseq2 
>predict reseq3,equation(#3) residuals 
>tsline reseq3 
>predict reseq4,equation(#4) residuals 
>tsline reseq4  
>estimates store devmodeqs 
>forecast create devmod,replace 
>forecast estimates devmodeqs 
>forecast solve,begin(2010) 
>tsline lgovgdp f_lgovgdp 
>list f_lgovgdp 
 
The reg3 lines of code call the Stata routines for 3SLS. The predict lines of code allow the 
analyst to generate the residuals for each equation. The tsline codes allow visual examination of 
the residuals while specifying and estimating the model. In practice, the analyst would need to 
adjust to ensure that the final forecast model has stationary residuals, with the aim being to bring 
them as close to as possible to being white noise. Figure 12 displays the residuals generated with 
data for the case of Trinidad and Tobago at the point when the specification and estimation 
process was brought to a halt. They are stationary even if not white noise and can be improved 
with more research. 



Figure 3-12: Residuals for Expenditure Forecasting Model 

  
Panel A: Residuals for lgovgdp Panel B: Residuals for lapcon 

  
Panel C: Residuals for lcpi Panel D: Residuals for lklratio 

 
The forecast of lgovgdp comes from four additional steps.  

a. The code ‘estimates store devmodeqs’ stores the results of the estimation 
process under the name devmodeqs and makes them available to the next line 
and step, which name where the set of forecast equations will be held with the 
code ‘forecast create devmod, replace’.  



b. The ‘replace’ component allow the model to be run repeatedly without having to 
change the name of the model pool.  

c. The code ‘forecast estimates devmodeqs’ loads the estimated equations into 
devmod.  

d. The code ‘forecast solve, begin(2010)’ tells the computer to solve the system of 
equations numerically, which is the same as generating the actual forecasts. In this 
case, the instruction is to report forecasts starting from 2010. Any start data within 
the time series can be used, after the number of lags and leads are considered. The 
above model uses at most 2 lags, so forecast can start in 1972 and go all the way 
to 2013.  

 
The graph of the revenue forecasts can be produced with the code ‘tsline lgovgdp f_lgovgdp’, 
and the forecasts can be listed with ‘list f_lgovgdp’ . Figure 13 is the graph of the forecast from 
1972 to 2013. It is clear from inspection that the model gives a fairly good ‘in-sample’ forecast 
of lgovgdp. To forecast to 2015 or 2016, all the other variables will have to be updated to the 
chosen budget year, using one of the independent forecasting methods presented above. 
 
 

Figure 3-13: In-sample forecast of lgovgdp 

 
 

Since the forecast equation generates $����qj�"� = ln	I�r)�"�, it is necessary to recover the 

forecasted level of government spending with p�"�\  from equation (61) and the following 
equation: 
 

68. ��"�X = p�"�\ ∗ exp $����qj�"� 
 



As indicated above, this aggregate estimate provides an estimate of the budget ceiling that can be 
put through the judgement forecasting process and be subjected to further political influence 
when the budget is being made. 
 

Disaggregated Budget Forecasts 
The most widely used method of preparing disaggregated budget forecasts is an application of 
the elasticity approach specified to cater directly for cases when long time series are not 
available. The general method is used to forecast categories that change due to changes in 
underlying macroeconomic, fiscal, structural and socio-demographic variables. The general 
formula for the method is to use equation (1) and obtain the forecast of the rate of growth of ��,� 
using independent elasticity measures. The general formula is: 
 

69. ��,� = �e,r�t,� 
 

where, �e,r is an independent estimate of elasticity. Application of the formula is subject to the 
conditions specified above in relation to equation (56): (i) non-stationarity, and (ii) cointegration 
between � and p. 
 

Regarding the independent estimates of �e,r, an elasticity of 1 implies that a 1% increase in p� 
results in a 1% increase in ��. This is most widely evident with taxes on habitual consumer 
expenditures, such as sugar, salt, alcohol and cigarettes. However, if data are not available for an 
independent estimate, the PER Team should use an elasticity of 1. The PER Team should use an 
elasticity other than 1 only when it is backed by economic rationale and tends to reduce bias and 
increase precision in the estimates. Taxes with a progressive schedule, such as many types of 
income tax, will yield disproportionately high revenues compared with the tax base. In those 
instances, the elasticity will be higher than 1. Taxes with a regressive schedule will yield 
disproportionately low revenues compared with the tax base. In those instances, the elasticity 
will be lower than 1. The outcome is similar for taxes which are based on a linear schedule but 
are subject to a depreciation tax allowance or an earnings cap. Elasticities other than 1 may also 
reflect sustained structural changes within the underlying variable. For example, an ongoing 
movement from the consumption of goods and services taxed at the standard VAT rate to goods 
and services taxed at a reduced VAT rate would cause the elasticity of VAT revenues from 
consumption to fall below 1. 
 

Disaggregated Expenditure Forecasts 
The disaggregated approach to expenditure forecasting is a ‘bottom-up’ mapping of expenditures 
to underlying indicators. The core list of expenditure categories to be forecasted has been 
provided earlier in the Annex. Table 4 lists the expenditure categories, suggested forecasting 
methods including equation (69), and suggested matching indicators to be used when generating 
the forecasts. In general, expenditure forecasts are derived from underlying economic and social 
variables.  



Within a broad COFOG classification, all the listed budget categories should be forecasted, even 
if on an ad hoc basis. The underlying variables used in forecasting a budget category is an 
analytical decision based on the PER Team’s understanding of the socio-economic factors that 
are highly correlated with it. The choice of underlying variables should be limited to variables 
for which forecasts exist or can be obtained through one or more of the forecasting methods 
described above. Thus, the use of equation (69) may be combined with other forecasting 
methods. The disaggregated forecasts are used together with the budget ceilings and strategic 
allocations when evaluating the allocative efficiency of the budget. 
 

Table 3-4: Methods and Indicators used to Forecast Government Expenditure 

Budget Category 
Forecasting 

Method 
Main Underlying Indicators Suggested 

Intermediate Consumption %���; trend; elasticity Budget subcategories, health sector reform 

Compensation of Employees 
 

 

Wages and salaries Trend; elasticity 
Negotiated wages, CPI, employment growth, structural or socio-
demographic changes of employment; Financial rules and 
regulations 

Employers’ social contributions Elasticity Growth of wages and salaries 

Employers' imputed social contributions Trend  

Tax Incentives/Allowances on Production and 
Imports Elasticity 

Growth of wages and salaries 

Subsidies %���; trend  

Tax Incentives/Allowances on Property Income to 
Encourage Entrepreneurship and Investment Elasticity 

Level of market interest rates, debt maturity profile, growth of 
government debt 

Tax Incentives/Allowances on Current Income, 
Wealth, etc.  %��� 

Budget subcategories 

Social Benefits other than Transfers in Kind 
 

 

Pensions Trend; elasticity 
Official growth pension payments, structural and sociodemographic 
changes and number of pensioners 

Unemployment benefits Elasticity Number of unemployed 

Long-term care benefits Trend  Recipients of long-term care benefits (by levels of care) 

Family benefits Trend; elasticity Budget subcategory, demographic changes 

Social benefits n.e.c. %���  

Social Transfers in-Kind Trend; elasticity 
Budget subcategory, CPI, number of recipients of long-term care 
benefits, pupils, old-age or invalidity 

Other Current Transfers 
 

 

To Households Trend Budget subcategories 

To CARICOM, etc.; To OECS Subjective/qualitative CARICOM Budget 

Current transfers n.e.c. Trend Budget subcategories 

Capital Transfers 
 

 

Bank support package Subjective/qualitative Level of market interest rates, annual reports, budget plan 

Capital transfers n.e.c. %���; trend  

Gross Capital Formation by Government 
 

 

Other general services Trend Budget subcategory 

Health Subjective/qualitative Health care reform 

Research and development Trend Budget subcategory 

Road, air, and related infrastructure for 
transportation Trend 

Budget subcategory; Public works plan 

National Security %���  

Education Subjective/qualitative Education development plan 

Depreciation/Maintenance Subjective/qualitative 
Financial rules and regulations; Existing Public Sector Reform 
programs 

Contingencies %���  



To develop the forecasts, the following specific steps must be followed: 
1. Identify the expenditure category to be forecasted.  

2. Identify the underlying indicator or predictor. 

3. Deflate the nominal expenditures and nominal indicators where applicable, in order to 
eliminate price effects. The GDP deflator or an alternative price index would be needed 
for this purpose. 

4. Identify, quantify and deflate all discretionary changes in expenditure policy. 

5. Adjust the real values of the expenditure categories to remove the effects of changes in 
discretionary policy. 

6. Identify the applicable independent estimate of elasticity. 

7. Forecast the growth of the underlying indicator variable. 

8. Using the forecasted indicator growth rate and the elasticity indicator to forecast the 
future expenditure. 

 

Disaggregated Revenue Forecasts 
Instead of using dummy variables to monitor the effects of discretionary policy changes in 
equation (58) or equation (59), an important step is to adjust the taxes directly to reflect the 
changes. This is best considered in the context of the application of equation (56) to each distinct 
tax base. If data are available, it is better to proceed by forecasting each component of the tax 
collection using forecasts of its associated tax base generated by the macroeconomic growth 
model. There should be a close relationship between the tax base and the taxes collected. Also, 
forecasting of the distinct components keeps in view the structure of the tax system and the tax 
base, which is also of interest in sector PERs. Sector PERs must monitor the revenue sources that 
are generated by the activities/programs and agencies funded by sector allocations. This is a 
bottom-up mapping approach to revenue forecasting. 
 

To apply this method, the following specific steps must be followed: 
1. Identify the tax categories that should be forecasted.  
2. Identify the matching tax base of each tax. 
3. Deflate the nominal taxes and tax base to eliminate price effects. The GDP deflator or an 

alternative price index would be needed for this purpose. 
4. Identify, quantify and deflate all discretionary changes in tax policy– the tax rate and the 

tax base. 
5. Adjust the real values of the tax categories to remove the effects of changes in 

discretionary tax policy. 
6. Regress the natural logarithm of the adjusted real taxes on the natural logarithm of the 

relevant tax base. 
7. Forecast the tax base with a multi-sector macroeconomic model, such as indicated in 

Annex 2. 
8. Using the forecasted tax base, forecast the future real tax flow using the MN and M� for 

that tax base. 
 



The rule of thumb normally used is that a tax should be forecasted if it accounts for more than 
5% of total taxes (Jenkins et al, 2000: 53).19 Taxes should also be forecasted if they are based on 
consumption habits, such as alcohol and cigarettes, or are difficult to escape because they are 
collected at a point of transaction, such as purchase of an airline ticket. In the partner countries, 
the set of taxes to be considered are at least the following: 

1. Income, profits taxes – PAYE 
i. Individuals 

ii.  Corporations 
iii.  Other 

2. Domestic taxes on goods and services 
i. Sales taxes – VAT 

ii.  Motor vehicles 

3. Property taxes 
i. Inheritance and gift 

ii.  Land and other property taxes 
iii.  Other recurrent property taxes 

4. Other taxes 
i. Stamp duties 

ii.  User fees and other taxes not elsewhere classified 

5. Draw-downs from sales of government-owned business enterprises 

6. Receipts of social security contributions 
i. From employers 

ii.  From employees 
iii.  From self-employed 
iv. Other social security contributions 

 

Table 5 lists the matching tax-bases of some of these taxes: 
 

Table 3-5: Important Taxes and Tax Bases in Partner Countries 
Tax Category (��) Tax Base (pa) 
PAYE 

Personal Income (wages and salaries; emoluments; 
dividends; profits) 

Alcohol and cigarette taxes Alcohol and cigarette sales 
Value-added Taxes Consumer spending (subject to taxation)  
Travel taxes Airline sales 

Corporate taxes 
Business income (operating surplus), including 
household  unincorporated enterprises 

Real estate tax Real estate sales 

User fees 
Construction and building permits service fees for 
education and health 

Trade tariffs Exports; imports 

                                                           
19 Jenkins, G.P., Kuo, C., and Shukla, G.K. (2000). Tax Analysis and Revenue Forecasting: Issues and Techniques. 
Harvard Institute for International Development, Harvard University. 



Equations (9) and (10) of the macroeconomic development model in Annex 2 imply that 
corporate tax forecasting model should distinguish between the characteristics of different 
industrial sectors, with particular regard to their capital intensive nature – their capital-labour 
ratio. This is also related to the volatility of depreciation-related tax deductions accompanying 
differing investment adjustments to economic conditions. It is also related to the problems of 
measuring income when doing national income accounting for some sectors such as the finance 
sector.  
 
In the bottom-up approach, the aggregate revenue forecasting models are largely accounting 
frameworks designed to account for the conceptual differences between the taxable base, which 
reflects tax law and changes in the economic base. These differences are most pronounced for 
the income tax heads of revenue, in particular corporate income tax. Econometric techniques are 
not usually required to uncover the quantitative relationships between a head of revenue and its 
taxable base when the elasticity of revenue to its taxable base is one. Intuitively, this means that 
taxation revenue increases by one per cent for each increase of one per cent in the taxable base.  
 
The main exception is Treasury’s model for income tax withholding, which incorporates an 
elasticity which has been econometrically estimated, to capture the progressivity of the 
individuals’ income tax system. The revenue forecasting models generate forecasts on an income 
year or accrual basis. To generate forecasts on a cash basis these forecasts must be adjusted for 
the revenue’s payment arrangements. To produce a forecast for each head of revenue the cash tax 
revenue forecasts are then adjusted for the estimated impact of government policy decisions, 
court decisions and compliance activity.  
 
The payment arrangements introduce a lag between the timing of the economic activity and the 
receipt of the associated revenue — for example, 60 per cent of corporate income tax is typically 
received in the year that the profit is generated, with the remaining 40 per cent received in the 
following year. Further adjustments are made to take into account any information on recent 
taxation collections. It follows from this approach to forecasting that the PER should issue an 
opinion on the need for continued work to understand each taxable base and the tax payments 
system. The PER should consider the difference between the taxable base and the economic 
bases, and to identify and resolve instances where taxation receipts and economic data are 
providing conflicting signals about the state of the nominal economy.  
 
3.2.1.17 A Note on Microsimulation of Revenues 
Microsimulation uses a wide range of models mainly to impute missing data about tax liability in 
the light of particular changes of public policy. The models estimate tax liability using data 
supplied by tax filers and non-filers.  
 
  



Although it is a data- and computationally-intensive method, microsimulation is growing in use 
in revenue forecasting because it has a key readily available data source – the tax returns and 
other data of individuals and businesses. Good available references for the method are (Jenkins 
et al, 2000)20 and Mitton, Sutherland and Weeks (2000).21 The summary presented here follows 
these references closely. The simulation methods are ‘micro’ because they rely mainly on data 
about individuals, households or businesses who make decisions and undertake activity that are 
affected by the discretionary policies of government, and who report their resulting tax 
obligations to the authorities. Reliance on this data is a strength of the method, but is also a 
weakness in the partner countries because micro data availability is an issue.  
 
The method tends to rely on survey data, which has the additional strength of being 
representative of the population taxpayers and non-filers. Sample sizes range from 1% to 5% of 
the employed population, adjusted for resource availability to field the survey. Multi-stage 
stratified random sampling is practical and cost-effective,22 and is consistent with the methods 
used by the National Statistical Organisations of the partner countries. The underlying strata for 
tax simulation would normally be as follows: 

1. Source of income 

a. salaried employment 
b. investment, 
c. type of industry, for example 

i. mining 
ii.  farming,  
iii.  fishing,  

d. type of profession 
i. professional 

ii.  business 
2.  Location of residence  

i. Foreign vs local 
ii.  Urban, rural, district 

3. Tax status 

i. Taxability 
ii.  Income size 

 

                                                           
20 Jenkins, G.P., Kuo, C., and Shukla, G.K. (2000). Tax Analysis and Revenue Forecasting: Issues and Techniques. 
Harvard Institute for International Development, Harvard University. 
21 Mitton, L., Sutherland, H. and Week, M. (2000). Microsimulation Modelling for Policy Analysis. Cambridge: 
Cambridge University Press. 
22 The list of possible methods are: (i) simple random sampling; (ii) systematic sampling; (iii) stratified sampling; 
(iv) cluster sampling; and (v) multi-stage sampling.  



However, reliance on survey data also makes the method vulnerable to bias due to the severe 
under-reporting challenges confronting all income-related survey in these countries. 
 
The basic strategy of the forecasting method is to use modern statistical software to develop the 
statistical distributions of the taxes reported by individuals and then estimate the effects of a 
given policy on the distribution. Distributions can be developed and compared for various 
subpopulations: income groups, sex, age, family size, and the like. The capacity to process large 
datasets speedily is the core strength of the computational methodology. The great advantage of 
large datasets is the tendency for all distributions to tend to the normal distribution. This is an 
advantage because such distributions can be completely described by their mean and variance, 
and they allow a wide range of simulation techniques to be used, each with a specifiable level of 
confidence. The focus of the simulations is on estimation of the differences in the distributions 
between distributions before and after the policies (treatments) are applied, and on the associated 
implications for collectible tax revenues. The method also simulates the differences of groups 
who are affected by the policy and those who are not, but who are otherwise identical. Once 
micro data are available from a sufficiently large random sample of taxpayers, several steps are 
following, which are broadly described here: 
 
Data aging: This is a method of imputing new characteristics to the existing micro units, by 
reweighting and by indexation to particular money amounts. Some methods use no aging, 
preferring to use updated information on the same units, as is done in a longitudinal panel. 
Surviving units age by one year in each year of observations. Deterministic and stochastic 
methods are used to do the change of status, especially in terms of: 

1. Income 
2. Employment 
3. Housing, including cohabitation 
4. Parenthood  

 
Addition of Behavioural Response: Most often panel data are used to consider how behaviours 
change with age – behaviours such as dependence on household, fertility, skill, and the like, that 
have an effect on income and wealth. 
 
Methods are either static or dynamic. Static methods use the data for a single survey and can 
suffer from considerable bias. Dynamic methods rely on longitudinal panels with a sufficiently 
large number of survivors from period to period to give information about the ‘transition 
probabilities’. 
 
  



Summarily, with the individual tax returns in hand and with suitable survey data, the 
microsimulation models will make relevant calculations based on the applicable laws and 
regulations regarding tax liability, including incentives and allowances. Note the following: 

1. Since the data comes from a multi-stage stratified sample, each tax return has an 
associated weight. The weight defines the number of other filers represented in the 
stratum from which it comes. 

2. Calculations of the model will adjusted the observations by these weights in order to 
compute sums and estimate total revenue yielded by any type of tax and all taxes. 

  
Taking into account the aging methods and the behavioural assumptions, the data sets in use will 
contain: 

a. Historical database of individual tax returns. 

b. Weighted historical data of individual tax returns.  

c. Aging or growth factors. These factors grow the historical database to represent 
the current position and to a chosen future year. 

d. Behavioural factors. These factors further adjust the aged data to better represent 
the position in the chosen future year.  

e. Historical database of individual tax returns incorporating respective growth rates 
and behavioural factors. Thus, for example, the wages in the database are 
increased by a wage-growth factor up to the current or future year. 

f. Weighted historical database of individual tax returns incorporating respective 
growth rates and other behavioural factors. Here the weights or raising factors are 
applied to raise the aged historical database to arrive at the situation of the total 
population. 

 
With this data in hand, the simulation models can be run, including cross-section and 
longitudinal versions of the regression models that relate tax revenues to their respective tax 
bases. 

4 Summary 
Apart from microsimulation, the set of methods described in this Annex comprise a basic set that 
can be used with the data available in the partner countries. The methods range from expert 
judgment to macroeconomic forecasting based on a model that treats the economy as a system. 
The latter is needed to support the search for consistency in sector allocations rather than 
produce a budget that is merely an amalgam of ministry requests. It is emphasized that 
judgement is an important part of the forecasting effort. This judgement should be developed 
through expert opinion and through dialogue with the business community and other informed 
stakeholders.  


