Exploiting Data to its Fullest

0

 \Diamond

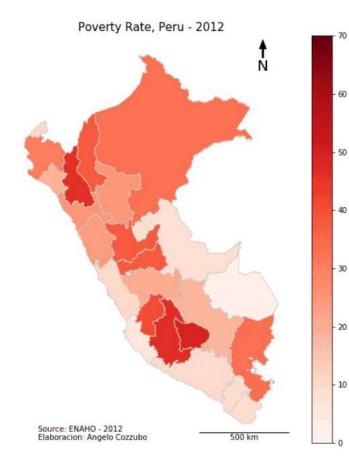
0

Machine Learning and Small Area Estimation June 2023

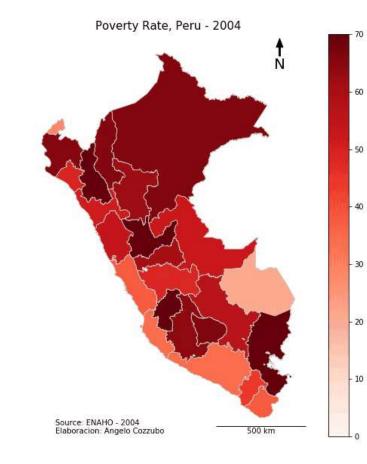
Angelo Cozzubo (INPRO) Carolina Franco (Statistics and Data Science)

Exploiting Data to its Fullest

Traditional national surveys provide broad estimates



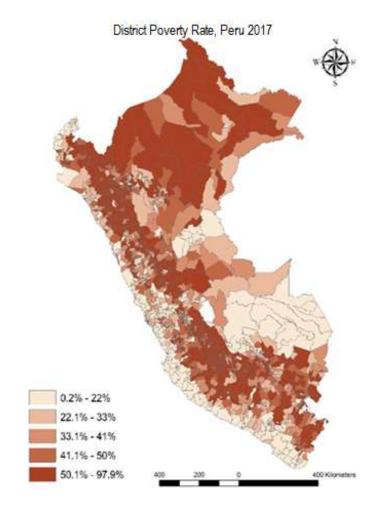
We may be lucky and even have many waves of data



Why stop here?

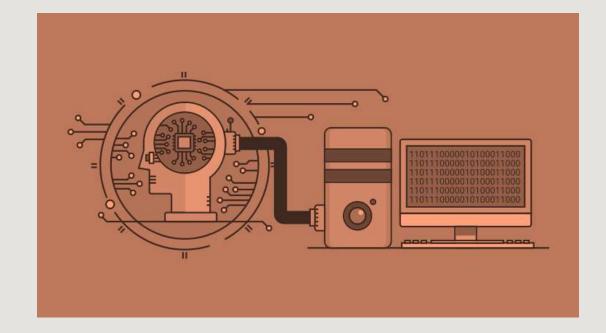
VNORC LABS

We can use Small Area Estimation (SAE)



And again, why stop in traditional SAE?

Since SAE is a predictive task \rightarrow potential to exploit Machine Learning



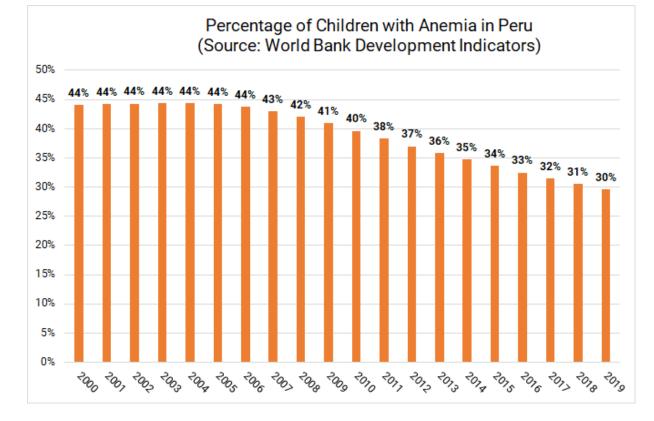
Our implementation

\checkmark SAE of anemia prevalence in Peru

- Pressing problem: local estimates not available
- Access to non-public rich datasets. 558 clean covariates
- ✓ Special challenge: K > N
- ✓ Pool several waves of data

Anemia in Peru

- 2018 \rightarrow National Plan to Combat Child Anemia
- Official estimates \rightarrow Only at the regional level.
- Hard for policymakers to plan local interventions
- We built an anemia prevalence map
 - New SAE-ML approaches
 - Province-level estimates



Data Source: World Health Organization, Global Health Observatory Data Repository/World Health Statistics.Accessed via World Bank Development Indicators

NORC LABS

Exploiting Data to its Fullest with Machine Learning

National Statistics Offices do not publish estimates with high uncertainty: UNRELIABLE

Objective → Reduce uncertainty of provincial-level estimates

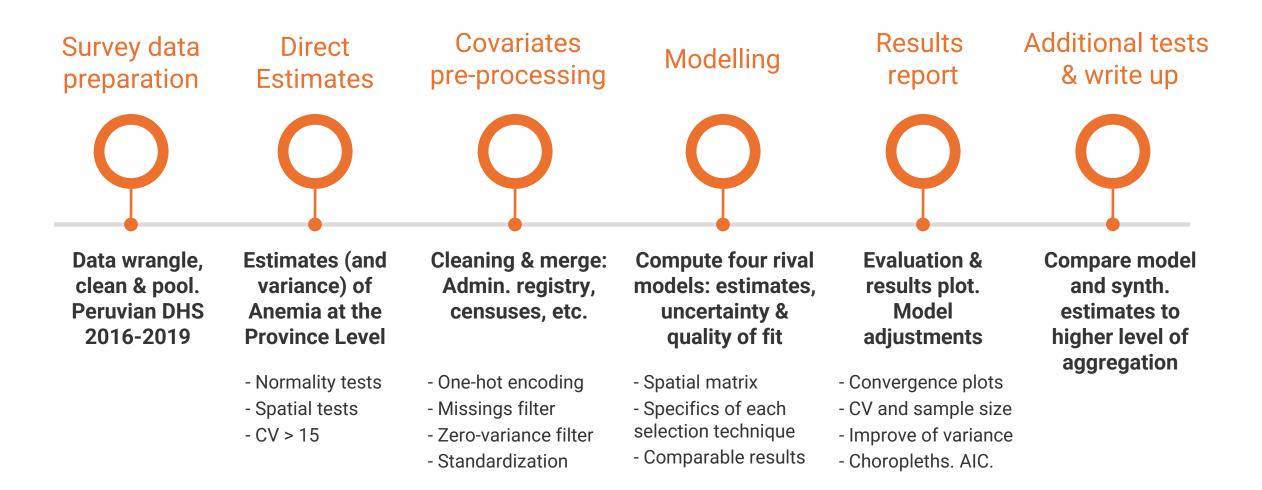
- We used area level SAE models \rightarrow Fay Herriot model
- Model <u>borrow strength</u> from administrative records and census covariates to reduce the uncertainty
- Spatial Fay Herriot: also borrows strength from neighbors
- We explore techniques to find the "best" set of covariates
 - Expert's opinion

• Stepwise selection

• LASSO

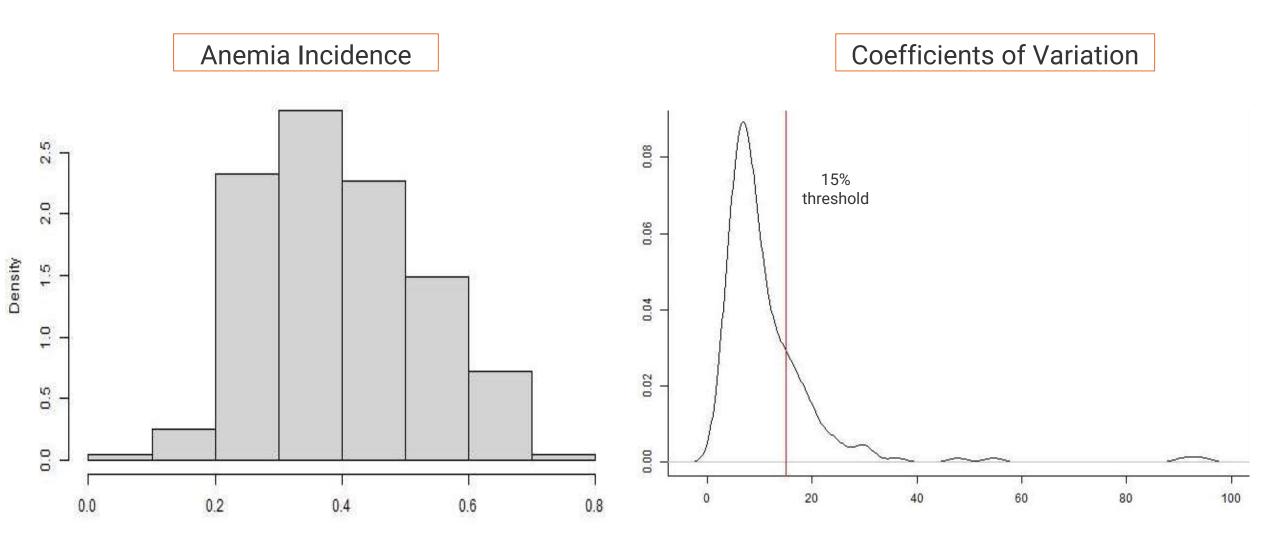
VNORC LABS

The process



DIRECT ESTIMATES

Anemia – 194 direct provincial estimates



8

NORC LABS

THE MODEL

The (Spatial) Fay Herriot Model

Canonical area level model (1979). For a population characteristic θ_i (anemia)

$$\widehat{Y}_i = \theta_i + e_i$$
$$\theta_i = x'_i \beta + u_i$$

- \widehat{Y}_i : vector of direct HT estimates, \forall i provinces
- $\circ e_i$: vector sampling errors, independent of u_i

Spatial extension. Borrows strength from neighbors

 \circ u_i follows Spatial Autoregressive process

$$u_i = \rho W u_i + \eta_i$$

where ρ denoting the autoregression parameter, W a standardized queen proximity matrix and $\eta_i \sim N(0_i, AI_i)$ for A unknown

- \circ x'_i : matrix of explanatory variables
- \circ u_i : vector of area effects

Rival models for covariate selection

Experts

Zoom interviews to Peruvian experts on health topics

Intersection criteria for the predictors

7 predictors

Bidirectional step method.

AIC and significance criteria

14 predictors

LASSO

Model with Random Effects

Hyperparameter by GridSearch. Correlation filter

97 predictors

Sparse PCA

PCA decomp. Selection main components

1-in-20 criteria. 80% of variance explained

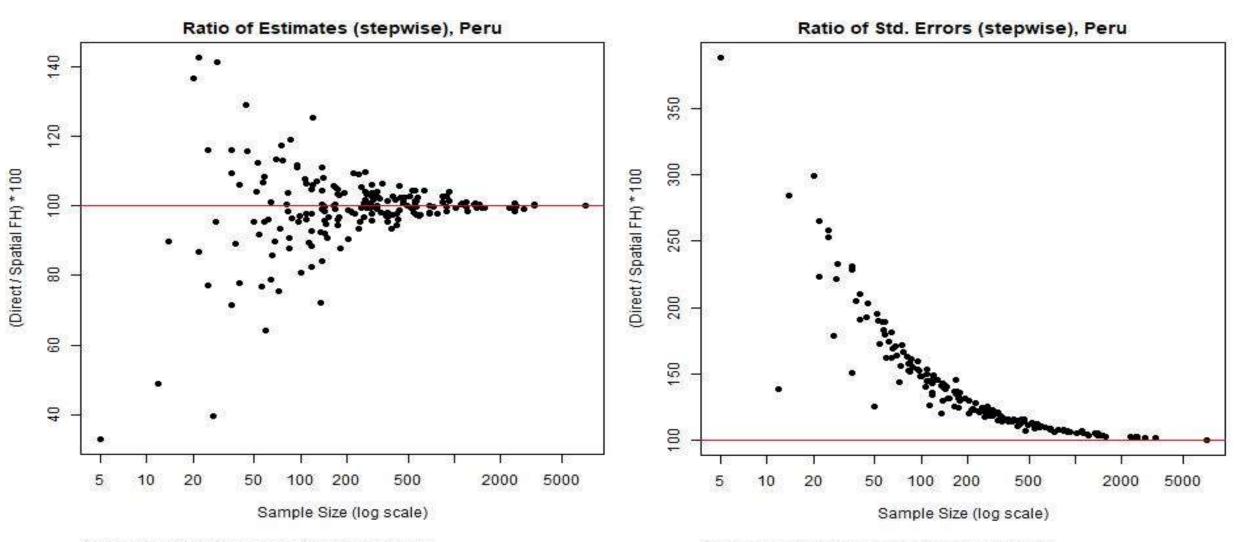
10 predictors (components)

 $\mathbf{+}$

We computed Spatial Fay Herriot models

Use set of predictors chosen by each technique

Objective: Improve the variance of the province-level Anemia estimates Results (I) – Convergence to direct estimate & reduction of variance



Note: FH = Fay-Harriot model, X-axis in logarithmic scale. Compiled by authors.

Note: FH = Fay-Harriot model. X-axis in logarithmic scale. Compiled by authors.

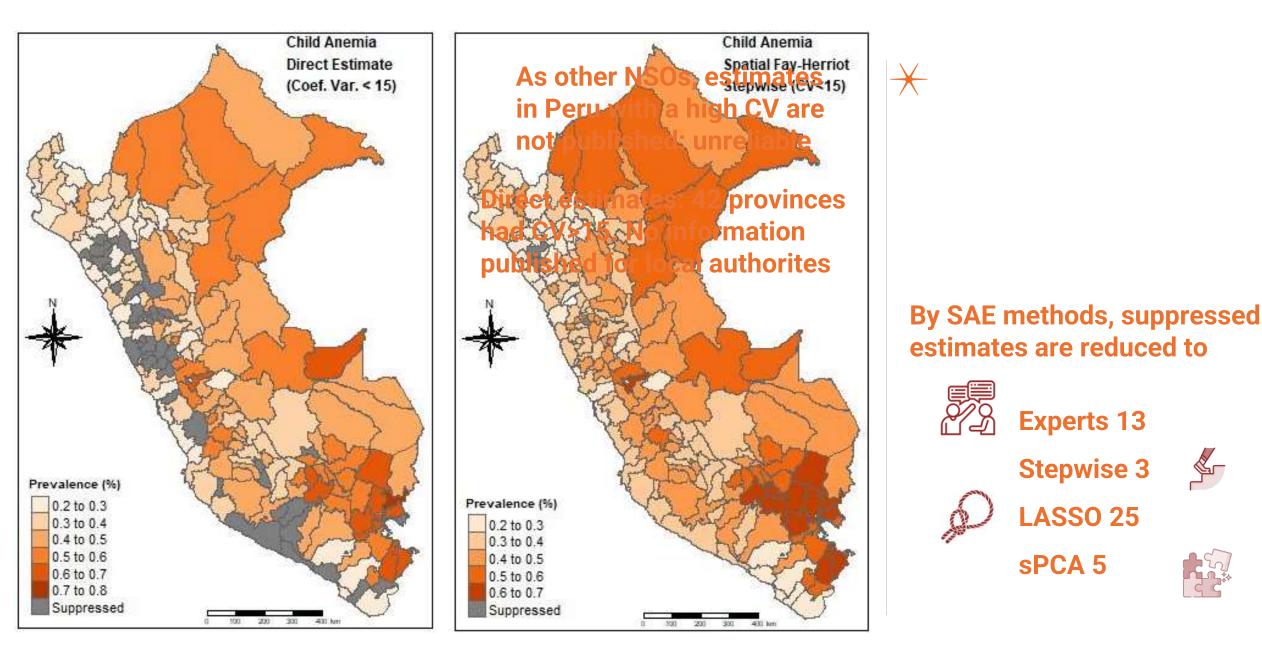
NORC LABS

Results (II) – All variable selection methods helped to reduce the CVs/variances. But some were more effective.

 $\mathbf{+}$ Coefficiente of Variation, provinces with smallest sample size Median variance reduction 100 percentage for each Direct Experts selection method: Stepwise LASSO □ sPCA 80 **Experts 24%** 60 C.V. **Stepwise 35%** 40 **LASSO 12%** 20 **sPCA 28%** 5 12 20 25 25 27 28 14 22 22

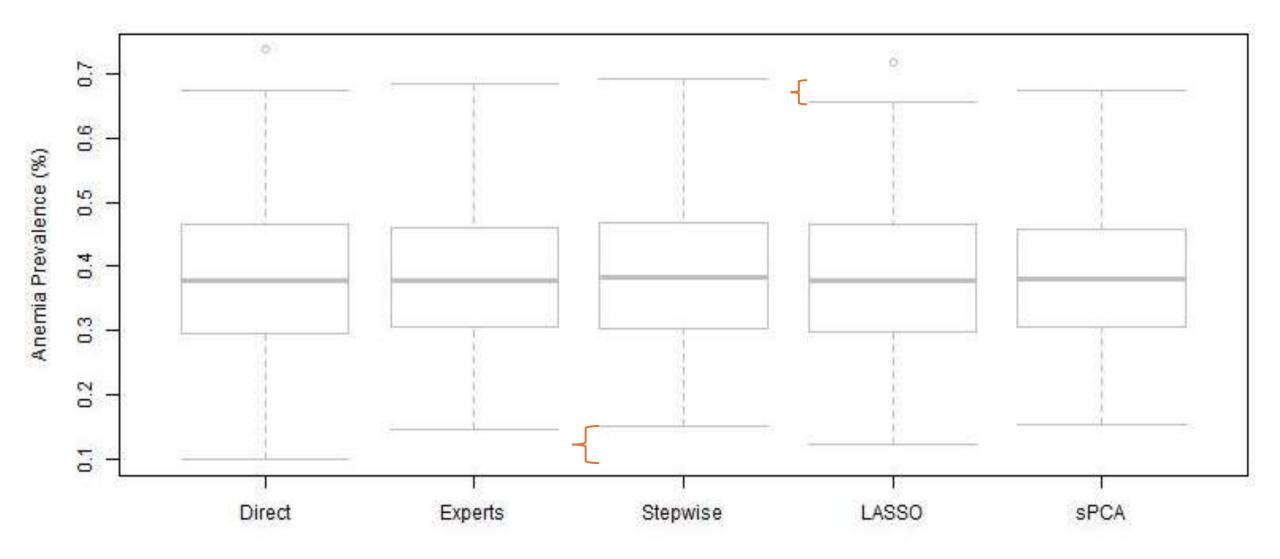
Sample Size

Results (III) – Recover estimates for 20% of the provinces



NORC LABS

Additional tests – Estimates comparison

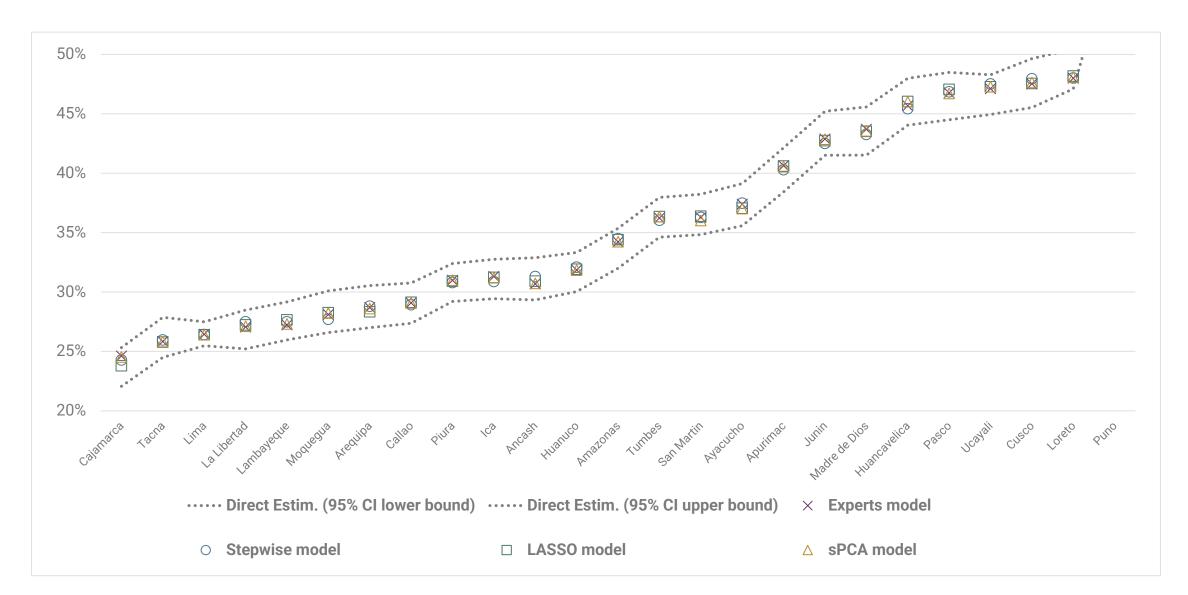


Additional tests – Quality of fit

Model	Log Likelihood	AIC	BIC
Experts	201.6	-385.3	-355.9
Stepwise	273.7	-513.3	-457.8
LASSO	280.1	-360.3	-33.5
Sparse PCA	221.8	-417.7	-375.2

16

Additional tests – Model estimates (\hat{Y}_i^{FH}) at the region level



Additional tests – Synthetic estimates $(x'_i\hat{\beta})$ at the region level

Remember the FH model

$$\widehat{Y}_i = \theta_i + e_i$$
$$\theta_i = x'_i \beta + u_i$$

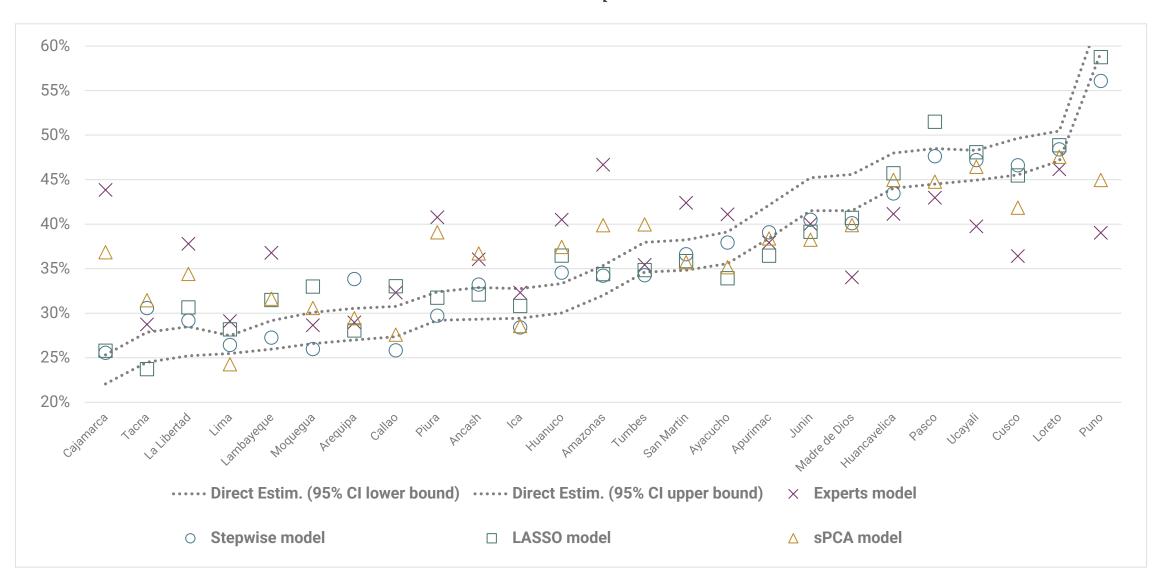
And the best linear predictor of θ_i

$$\widehat{\theta_i} = (1 - \gamma_i)\widehat{Y_i} + \gamma_i x_i'\widehat{\beta}$$

Then, FH estimator is a weighted linear combination of

- Direct estimator: \widehat{Y}_i
- Synthetic estimator: $x'_i \hat{\beta}$

Additional tests – Synthetic estimates $(x'_p \hat{\beta})$ at the region level



Results by the Numbers

39 out of 42

Suppressed provincial estimates were recovered

~33,000

Anemic children in recovered provinces

35%

Median variance reduction

19

Takeaways

SAE modelling to reduce uncertainty of local estimates

We studied alternative methods for covariate selection from a large pool of candidates (+500)

Stepwise model outperformed other methods based on our metrics

Borrow strength from administrative records, censuses, and neighbors' data

We applied our models to the child anemia problem in Peru. Great uncertainty reduction

Tackled an unresolved statistical problem in Peru. <u>Opportunity for</u> other health applications.

Questions?

Thank you.

Angelo Cozzubo Data Scientist I cozzubo-angelo@norc.org

Carolina Franco Principal Statistician franco-carolina@norc.org

Research You Can Trust

Appendix

From Administritative Records

- Total children under 3 years with anemia Percentage 2018
- Children under 3 years with severe anemia Percentage 2018
- Children under 5 years with mild anemia Percentage 2018
- Children under 5 years with severe anemia Percentage 2018
- Percentage of students in public school who only achieved undemanding tasks
- Percentage of students in a private school who achieved a partial learning objectives

From Population Census

- Household does not use manure for cooking
- House walls made of adobe or quincha
- Household does not have a refrigerator or freezer
- Household has a gas stove
- Household has a cell phone
- Household does not have a sound system
- Household has a motorcycle
- Household does not have an electric iron

VNORC LABS