

INTEGRATION OF HOUSEHOLD SURVEYS AND OTHER DATA SOURCES

DENISE BRITZ DO N. SILVA

SCIENCE

SOCIEDADE PARA O DESENVOLVIMENTO DA PESQUISA CIENTÍFICA

SEMINARIO REGIONAL SOBRE INNOVACIONES Y DESAFÍOS EN ENCUESTAS DE HOGARES - CEPAL

21 Nov 2024

THE CONTOURS - EVOLVING CHALLENGES

- Increasing demand for timely and disaggregated statistics
- Data revolution and the AI race
- Agenda 2030 and SDG Indicators

EVERY DAY FUTURE

- Need to optimise resources for the statistical production process
- Data ecosystem for official statistics:
 NSOs, public sector, private sector + citizen-generated data
- Relevance of integrated statistical and geospatial information

- Process to combine data from disparate sources into meaningful and valuable information (UN.ESCAP, 2020)
- Combination of data from different data sources to produce new data sets that are the basis for statistics or research

Data sources

- Statistical surveys (probability samples) and Census
- $_{\circ}$ Administrative registers
- $_{\circ}$ Nonprobability surveys
- $_{\circ}$ Geospatial information
- $_{\odot}$ Big data and citizen-generated data

Seminario Integración de Fuentes de Datos y Estadísticas Oficiales - México, May 2024 - INEGI and CEPAL

International Seminar on Integrating Household Surveys with Diverse Data Sources

19-21 Nov 2024- UNSD – NBS CHINA

Sistema Integrado de Registros Estadísticos y Encuestas ¿Qué es el SIREE?

Integración de Encuestas con Registros Administrativos

ESTUDIOS ESTADÍSTICOS 105

Modelos de unidad para la generación de mapas de pobreza a nivel subnacional

Andrés Gutiérrez Xavier Mancero Gabriel Nieto Felipe Molina Diego Lemus

A Guide to Data Integration for Official Statistics

Asia-Pacific Guidelines to Data Integration for Official Statistics

ESCAP

DATA INTEGRATION IN THE CONTEXT OF SURVEYS

Data Integration for, with, within and between household surveys

- Multiple data sources for the design and estimation phases
- Combining data and/or estimates from multiple surveys
- Use of a non-random data set to improve the statistical value of estimates from a random sample (Tam, 2020)
- Combining probability and nonprobability samples
- Data to supplement or replace the sample survey
- Multisource statistics (Waal et al., 2020)
- Statistical methods: record linkage, matching, modelling, spatial statistics, survey methods (finite population framework)

DATA INTEGRATION AND THE SURVEY PROCESS

- Datasets combined to create or maintain survey frames
- Several uses of auxiliary data:
 - $_{\odot}$ Survey and sample design
 - Measures of variability for design variables and/or size measures
 - Edit and imputation (accuracy checks, edit rules or modelling)
 - $_{\odot}\,$ Non-response and coverage adjustments
 - Weighting, calibration and poststratification
 - Model-based estimation procedures
 - $_{\odot}$ Validation of survey estimation and quality assurance

POSITIONING HOUSEHOLD SURVEYS FOR THE NEXT DECADE

- Multi-frame designs: to capture groups underrepresented in census frames
- Spatial sampling: to establish the main sampling frame
- Responsive and adaptive sampling design: to deal with surveys' complexities and declining response rates
- Improve interoperability and integration of household surveys with other data sources
 - Statistical Journal of the IAOS 38 (2022) 923–946 DOI 10.3233/SJI-220042

Calogero Carletto, Haoyi Chen, Talip Kilica and Francesca Perucci

DATA INTEGRATION WITH BRAZILIAN SURVEYS

Weighting for a non-probability sample carried out in the pandemic scenario

Marcelo Pitta (Brazilian Network Information Center - NIC.br), Pedro Silva

- Transformed Fay-Herriot Models for Quarterly Small Area Estimates of Extreme Poverty Rates in Brazil <u>Guilherme Jacob</u>, Nikos Tzavidis, Ángela Luna-Hernández and Pedro Silva (ENCE/IBGE and Southampton University)
- Time series models for repeated household sample surveys <u>Caio Gonçalves</u> (Fundação João Pinheiro), Luna Hidalgo (IBGE), Denise Silva and Jan van den Brakel (Statistics Netherlands)

WEIGHTING FOR A NON-PROBABILITY SAMPLE CARRIED OUT IN THE PANDEMIC SCENARIO

- NIC.br is responsible for planning, evaluating and monitoring the use ICT in Brazil
- Household Survey on the Use of ICT in Brazilian Households conducted annually - F2F interviewing
- During the pandemic, household survey was suspended
- ICT COVID-19 web panel survey
- Quota sample based on region, sex, age group, SES and education
- ~91k panel members contacted and ~2.5k responded
- Fieldwork period: June 23rd to July 8th, 2020

WEIGHTING FOR ICT COVID-19 WEB PANEL SURVEY

- Pseudo-weight estimation method to address selection biases of the ICT Panel COVID-19
- The 2019 ICT Household Survey was used as a reference sample for calculating pseudo-weights
- Inverse probability weighting Elliott and Valliant (2017)
- Timetable from planning to publication: less than two months
- Other surveys using the web panel approach: three during the pandemic and three on new topics
- Survey methodology, challenges and accomplishments <u>https://cetic.br/en/publicacao/painel-tic-covid-19/</u>

Elliott, Michael R., and Richard Valliant. 2017. Inference for Nonprobability Samples. Statistical Science 32 (2): 249–64. <u>https://doi.org/10.1214/16-STS598</u>

11

TRANSFORMED FAY-HERRIOT MODELS FOR QUARTERLY SMALL AREA ESTIMATES OF EXTREME POVERTY RATES IN BRAZIL

- IBGE produces annual estimates of extreme poverty rates at the national and state levels using its main household survey (PNADC)
- **SAE aim**: quarterly estimates (2013-2022) of extreme poverty rates at the Geographic Strata level (146 spatial domains)
- SAE method: Transformed Fay-Herriot models for proportions with area-time random effects
- Auxiliary data: administrative register of social program beneficiaries in Brazil, area indicator, indicator for quarters, AARR poverty rate and interactions

- TRANSFORMED FAY-HERRIOT MODELS FOR QUARTERLY
- Several transformations were tested
- SAE model represents spatiotemporal characteristics of Brazilian poverty from 2013 to 2022 (previously limited to the analysis of the state-level estimates produced annually by IBGE)
- On average, the MSEs of the model-based estimates were around 30% of the direct variances
- More disaggregated and more frequent statistical outputs
 <u>https://www.even3.com.br/anais/sinape2024/819122-beta-binomial-area-level-model-for-quarterly-estimates-of-extreme-poverty-rates-in-brazil/</u>

TIME SERIES MODELS FOR REPEATED SURVEYS

- Repeated surveys collect data at several points in time
- Repeated sample surveys: rotating panels
 - Some units are retained on the sample from one occasion to the next → Sample overlap between occasions
 - Inclusion/exclusion of units in the sample on distinct survey rounds
- Panel: set of sampling units that join and leave the sample at the same time

BRAZILIAN NATIONAL HOUSEHOLD SURVEY (PNADC)

- Publishes official unemployment figures since 2016
- Two-stage cluster design census enumeration areas are PSUs and households are SSUs
- Rotating panel survey with a partially overlapping sample of households – rotation pattern 1-2(5)
- Planned sample overlap between quarters: 80% of households
- Each household is interviewed once every quarter
- National estimates are released monthly (based on rolling quarterly data), and subnational estimates are published quarterly

CONTEXT

- Users have been calling for:
 - $_{\odot}$ estimates based solely on a single-month sample
 - greater frequency of subnational releases
- Single-month estimates are needed to monitor the labour market after the COVID-19 pandemic for state levels
- PNADC sample size big enough for monthly national estimates but not for state-level (more disaggregation and higher frequency)
- Alternative data sources as potential data for producing official statistics (integration of survey and other data sources)

SCIENCI

PNADC TIME SERIES

- Time series of a repeated survey with sample overlap
- Rotation pattern affects the correlation between survey estimates over time
- Observed series are subjected to sampling errors
- The sampling errors are correlated over time due to sample overlap

In the beginning....

Scott and Smith (1974); Binder and Hidiroglou (1988); Binder and Dick (1989) ; Tiller (1989); Pferffermann,

MODELLING TIME SERIES FROM REPEATED SURVEYS

Usual Approach $\hat{y}_t = T_t + S_t + I_t$

Standard time series procedures fail to account for the effect of the sampling error autocorrelation

Signal Extraction $\hat{y}_t = \theta_t + e_t$ Signal + Sampling Error $\theta_t = T_t + S_t + I_t$

 \hat{y}_t is the design unbiased survey estimate

- θ_t is the unknown population quantity
- e_t is the sampling error

SIGNAL EXTRACTION APPROACH: COMBINES TWO MODELS

- One to describe the evolution of the signal population quantity over time (signal) $\{\theta_t\}$
- One to represent the time series relationship between the sampling errors of the survey estimators (noise) $\{e_t\}$

MODELLING PROCEDURE

- Formulate time series models for the **signal** θ_t and the **noise** e_t
- Combine the models using a state-space formulation
- The models contemplate the survey design
- Estimate unobserved model components using the Kalman Filter

In the beginning....

Binder and Dick (1990); Pferffermann (1991); Tiller (1992); Pfeffermann, Feder and Signorelli (1998)

TIME SERIES MODEL-BASED ESTIMATORS

Flexibility to meet historical demands and new challenges

- Estimation of trend and seasonality
- Measurement of discontinuities due to survey redesigns
- Production of labour force indicators based solely on the cases surveyed in the reference month (instead of rolling quarters)
- Production of small area estimates
- Estimation of effects due to higher volatility
- Incorporation of auxiliary and alternative data sources, such as big data
- Nowcasting

 \hat{y}_t : design-based estimate at month t

Signal extraction: $\hat{y}_t = \theta_t + e_t$

Unobserved components of unknown population quantity: $\theta_t = T_t + S_t + I_t$ $I_t \sim N(0, \sigma_I^2)$

Trend: $T_t = T_{t-1} + R_{t-1}$

 $R_t = R_{t-1} + \eta_{R,t}$ $\eta_{R,t} \sim N(0, \sigma_R^2)$

$$S_t = \sum_{l=1}^{\frac{s}{2}=6} S_{l,t} + \eta_{S,t}$$
$$\eta_{S,t} \sim N(0, \sigma_S^2)$$

Seasonal Component

MODEL FOR PNADC SAMPLING ERROR (e_t)

Sampling error e_t : $e_t = \hat{c}_t \tilde{e}_t$

 \hat{c}_t : standard error of design-based estimates

PNADC rotation pattern 1-2(5)Each household is interviewed once every quarter (model is specified according to sample overlap)

$$\tilde{e}_{t} = \phi \tilde{e}_{t-3} + \eta_{\tilde{e},t}, \quad \eta_{\tilde{e}} \sim N(0, \sigma_{\tilde{e}}^{2})$$

23

PROPOSED MODEL FOR PNADC

 $\{\hat{y}_t\}$ $\hat{y}_t = \theta_t + e_t$ $\theta_t = T_t + S_t + I_t,$ $I_t \sim N(0, \sigma_I^2)$ $T_t = T_{t-1} + R_{t-1},$ $\{\theta_t\}$ $R_t = R_{t-1} + \eta_{R,t},$ $\eta_{R,t} \sim N(0, \sigma_R^2)$ $S_t = \sum_{l=1}^{\frac{s}{2}=6} S_{l,t} + \eta_{S,t},$ $\eta_{S,t} \sim N(0, \sigma_S^2)$ $\begin{bmatrix} e_t = c_t \tilde{e}_t \\ \tilde{e}_t = \phi_3 \tilde{e}_{t-3} + \eta_{e,t}, \end{bmatrix}$ $\{e_t\}$ $\eta_e \sim N(0, \sigma_e^2 \cong 1)$

24

MODEL BASED ESTIMATES FOR PNADC

Signal Extraction
$$\hat{y}_t = \theta_t + e_t$$

 $\theta_t = T_t + S_t + I_t$

 \hat{y}_t is the design unbiased survey estimate

- θ_t is the unknown population quantity
- \mathcal{C}_t is the survey error

seasonally adjusted series $\theta_t^s = T_t + I_t$

signal:
$$\theta_t^* = T_t + S_t$$

25

RESULTS

Unemployment rate design-based and model-based (trend) estimates, and coefficients of variation – Roraima

Single month sample size \sim 1,000 households

MODEL-BASED SINGLE MONTH ESTIMATES

ORIGINAL ARTICLE

Single-month unemployment rate estimates for the Brazilian Labour Force Survey using state-space models

Caio Gonçalves 🔀, Luna Hidalgo, Denise Silva, Jan van den Brakel

First published: 20 November 2022 | https://doi.org/10.1111/rssa.12914

Users have been calling for estimates based solely on a single-month sample, and for a greater frequency of subnational releases

REGIONAL MULTIVARIATE MODEL

 $\hat{y}_{j,t}$: design-based estimate for unemployment rate at month t in the state j

$$\begin{pmatrix} \hat{y}_{1,t} \\ \vdots \\ \hat{y}_{J,t} \end{pmatrix} = \begin{pmatrix} \theta_{1,t} \\ \vdots \\ \theta_{J,t} \end{pmatrix} + \begin{pmatrix} e_{1,t} \\ \vdots \\ e_{J,t} \end{pmatrix} \qquad j = 1, \dots, J$$

Borrowing strength from time and space

Models can be used for Small Area Estimation

DESIGN-BASED, TREND MODEL-BASED (UNIVARIATE AND MULTIVARIATE) ESTIMATES, AND COEFFICIENTS OF VARIATION MINAS GERAIS

REMARKS ON TIME SERIES MODEL-BASED ESTIMATES

- Model-based approach produces trend and seasonally adjusted series taking into account the sampling error
- The advantages of abandoning the use of three-month rolling estimates are wide
- Opportunity to produce monthly estimates for states with acceptable precision
- Regional multivariate models presented advantages

MULTIVARIATE TIME SERIES MODELS TO INTEGRATE SURVEY DATA WITH BIG DATA

Model-based Single-month Unemployment Estimates for the Brazilian Labour Force Survey Incorporating Google Trends Data

 Common trend models to combine survey data and Google Trends time series

$$\begin{pmatrix} \hat{y}_t \\ \mathbf{x}_t \end{pmatrix} = \begin{pmatrix} \boldsymbol{\theta}_t \\ \widehat{\boldsymbol{\Lambda}} \boldsymbol{f}_t \end{pmatrix} + \begin{pmatrix} \boldsymbol{e}_t \\ \boldsymbol{u}_t \end{pmatrix}$$

- x_t: Google Trends series
- f_t : factors obtained via principal components analysis of x_t

Google Trends

- Provides a series of word queries for several countries that can be specific for states or provinces
- The word queries are grouped into categories using a natural language classification engine, such as health, employment, sports, travel, etc.
- Search volume is normalized on a scale from 0-100, where the maximum (100) represents the query's highest point considering a specific beginning and end (GOOGLE, 2022)

Searched words?	trabalho	work	
	vaga	vacancy	OTTAWA 2023 64 th World Statistics Congress
Examples	vaga de	vacancy of	
	vaga de emprego	job opportunity	
	vaga de empregos	job vacancy	
	vaga de estagio	internship vacancy	
	vaga de trabalho	job vacancy	
	vaga emprego	employment vacancy	
	vagas	vacancies	
	oportunidades de trabalho	job opportunities	
	primeiro emprego	first job	
	processo do trabalho	work process	
	procuro emprego	I am looking for a job	

Multivariate time series models that integrate survey data with big data to produce:

- precise estimates of monthly unemployment figures
- nowcast estimates (since Google Trends series are available one month before the direct single-month unemployment estimates)

Common trend models to combine survey data and Google Trends time series

> Gonçalves, C. C. S. Produção de indicadores do mercado de trabalho com modelos de séries temporais de pesquisas repetidas. Tese de doutorado, ENCE, IBGE, 2023.

TIME SERIES MODEL BASED APPROACH

- Flexible and powerful method to produce reliable and precise model-based estimates
- Models can borrow strength from different survey occasions (in time), areas, as well as incorporate administrative or alternative data sources
- Models already tested and/or implemented by BLS-US, Statistics Netherlands, Statistics Canada, ONS-UK, ABS

CHALLENGES

- Model based approach is tailor-made
- Multipurpose small area estimation (Chandra and Chambers, 2006) https://eprints.soton.ac.uk/38464/
- Consider small area estimation plans when designing a survey Sample size calculation for small-area estimation (Longford, 2006) <u>https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X20060019259</u>
- Design surveys to leverage data integration
- Intruders also like data integration...

Statistical Disclosure Control (Templ, 2017) is essential

REFERENCES

Binder, R. and Dick, J. (1989) Modelling and estimation for repeated surveys. *Survey Methodology*, 15, 29–45.

Boonstra, H. J. and van den Brakel, J. A. (2019) Estimation of level and change for unemployment using structural time series models. *Survey Methodology*, 45, 395–425.

SCIENCE

Pfeffermann, D. and Tiller, R. (2006) Small area estimation with state space models subject to benchmark constraints. *J. Am. Statist. Ass.*, 101, 1387–1397.

Scott, A. J. and Smith, T. M. F. (1974) Analysis of repeated surveys using time series methods. *J. Am. Statist. Ass.*, 69, 674–678.

Scott, A. J., Smith, T. M. F. and Jones, R. G. (1977) The application of time series methods to the analysis of repeated surveys. Int. Statist. Rev., 45, 13–28.

Templ, M. Statistical Disclosure Control for Microdata: Methods and Applications in R, 2017.

Tiller, R.B (1992), "Time Series Modeling of Sample Survey Data From the U.S. Current Population Survey," Journal of Official Statistics, 8, pp149-166