

Generating environment, climate change and disasters indicators for use in policy decision-making in Grenada

17 - 19 Oct 2022

The geospatial dimension of environment, climate change and disaster statistics and indicators

Francisco Javier Jiménez Nava, Consultant

Environment and Climate Change Statistics Unit / Statistics Division Economic Commission for Latin America and the Caribbean (ECLAC)

Content

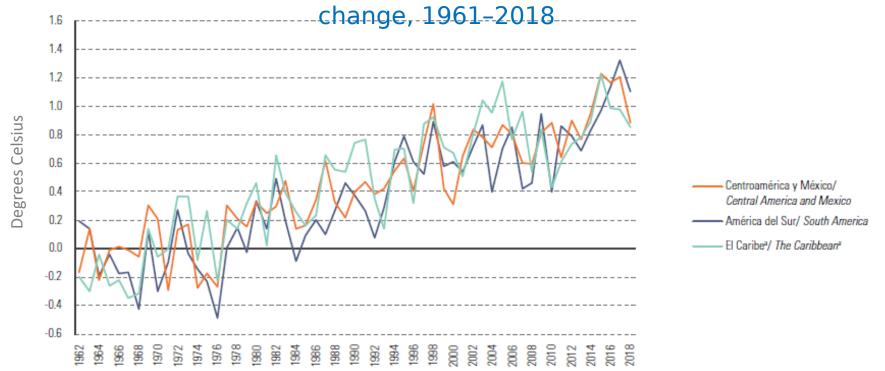
- Introduction
- Geospatial dimension of environment statistics
- Georeferencing
- Data/information sources
- Conclusion

Introduction

Everything happens somewhere

Statistics and geographic information are crucial to improve measurements and broaden the vision of well-being in all the SDG's

Source: Ocampo, R. (2015). The geospatial dimension of development [Slide]. Third Europe-Latin America Forum. Santiago, Chile.

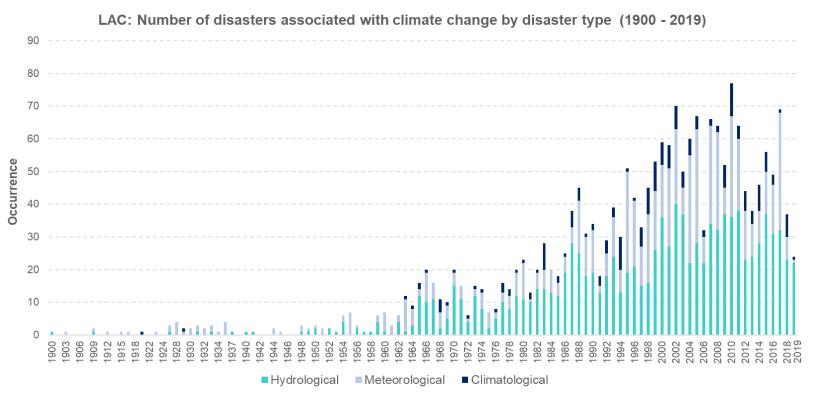

Introduction

Climate change: A permanent concern

 Latin America and the Caribbean region is especially vulnerable to climate change due to its geographical and climatic situation, socio-economic characteristics, and the high sensitivity of its natural assets (ECLAC, 2015).

Latin America and the Caribbean: mean annual temperature

[A] FAO, Base de datos estadísticos (FAOSTAT) [en línea] http://www.fao.org/faostat/es/#home.
a Incluye Cuba y la República Dominicana.



Introduction

Climate change: Impacts and risks

 Evidence of the impacts of climate change in LAC shows that these effects are already significant and, with a high probability, will be more intense in the future (IPCC, 2013).

The geospatial dimension of environment statistics

- The phenomena captured through the environment statistics occur on the earth's surface
- Phenomena happen in geographical spaces that do not always coincide with administrative limits
- They present gradients that go from a planetary to a local scales

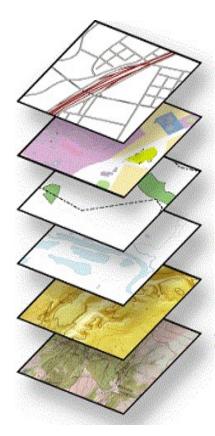
The geospatial dimension of environment statistics

The importance of where

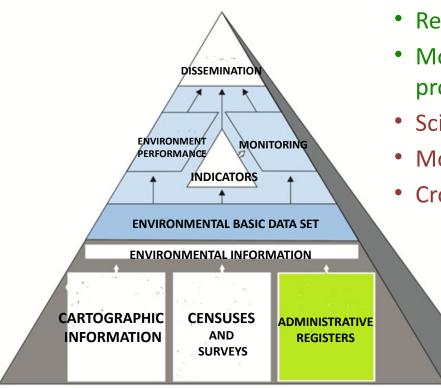
When looking at a map, we start turning that map into information by analyzing its content —finding patterns, assessing trends and making decisions. This process is called "spatial analysis."

Using spatial analysis, you can combine information from many independent sources and derive new sets of information. And by employing time series, you can detect changes over time.

Georeferencing


- Geographic shapes lines, points, polygons. Georeferencing is an attribute of the data.
- The integration of databases (layers) in a Geographic Information System (GIS) implies the precise location of the objects / entities

Georeferencing


- The possibility of overlay and correlate different layers of GIS data allows spatial relationships with other entities (topology) and temporal patterns.
- ➤ It is also possible to perform calculations, build indicators, analyze distributions, prepare thematic maps, and obtain new variables.

- Administrative records
- Remote sensing
- Monitoring stations and field monitoring programs
- Scientific research
- Modelling and Estimation
- Crowd sourcing

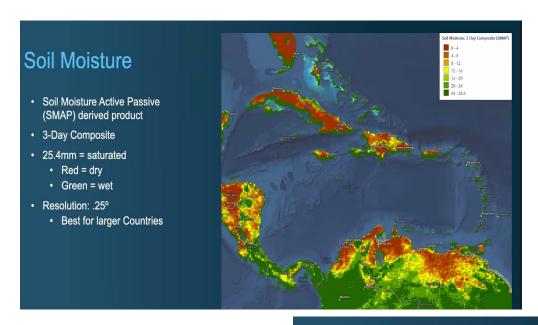
Data sources and georeferencing

In censuses and surveys, the use of mobile capture devices (tablets or similar) with global positioning capacities (GPS) allows the georeferencing of units through the geographic location of a point, line, or polygon, in these dwellings, economic establishments or agricultural holdings, during the same data collection process.

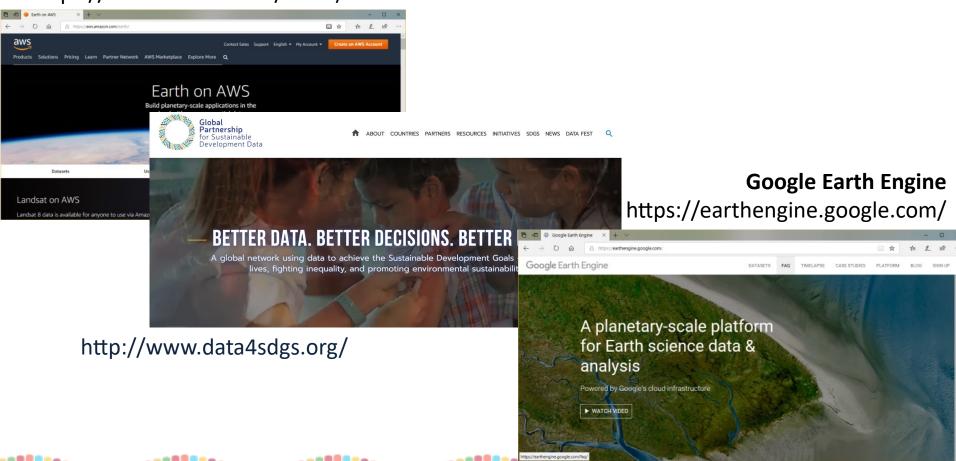
Other sources

- Remote sensing offers a broad spectrum of geo-referenced environmental data that provides a synoptic view of the different components of the environment.
- Data is obtained in digital format from instruments that measure the electromagnetic response of the different elements over the earth's surface.
- These data are subject to be processed applying classification techniques supported by field validations

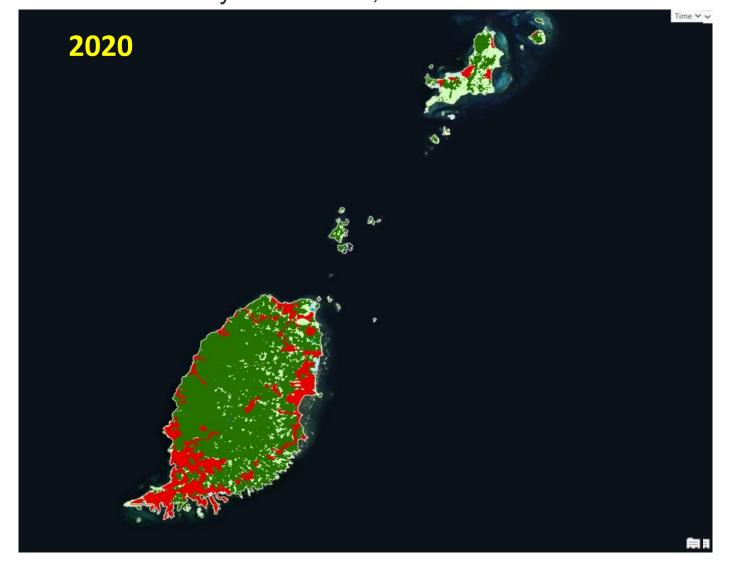
NASA products



NASA products



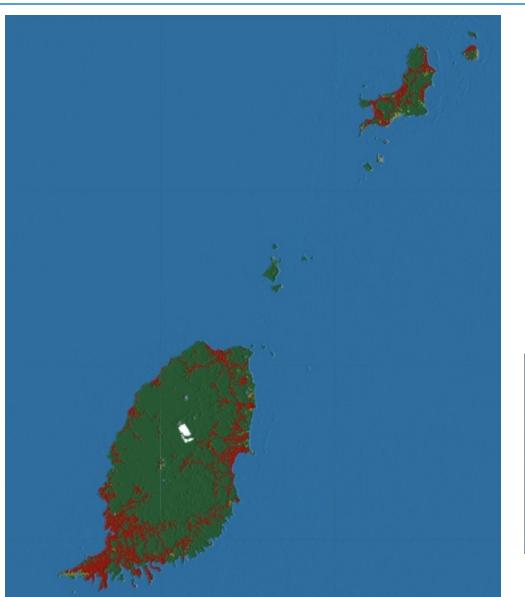
Data availability through other platforms


Amazon Web Services:

https://aws.amazon.com/earth/

Globeland30

GlobeLand30, the 30-meter resolution global land cover data product, was developed by the Ministry of Natural Resources from China. The availability is for: 2000, 2010 and 2020.



Clase	Año	Superficie Km²	%
Bosque	2000	294.63	81.95
Bosque	2010	257.56	71.64
Bosque	2020	238.67	66.38

		Area	Cultivated land		Forest		Grassland		Shrubland		Wetland		Water bodies		Tundra		Artificial Surfaces		Bare Land		Permanent snow and ice	
		km²	km²	%	km²	%	km²	%	km²	%	km²	96	km²	%	km²	%	km²	%	km²	%	km²	%
Grenada	2000	359.53	0.00	0.00	294.63	81.95	19.93	5.54	1.66	0.46	1.00	0.28	0.41	0.11		0.00	35./1	9.93	0.00	0.00	0.00	0.00
	2010	359.53		0.00	257.56	71.64	57.01	15.86	0.49	0.14	0.77	0.21	0.21	0.06		0.00	35.26	9.81	0.07	0.02		0.00
	2020	359.53		0.00	238.67	66.38	45.14	12.55	0.45	0.13	2.99	0.83	0.34	0.09		0.00	65.14	18.12	0.07	0.02		0.00

Dynamic World Landcover 2020

Conclusion

Location intelligence is the ability to analyze and find spatial patterns in data to provide powerful insights for understanding our world and communicating our needs.

This is possible through a combination of local data and advanced geospatial tools.

Conclusion

The web is a source of vast amounts of data, and spatial analysis offers the means to transform it into information for decision-making.

GIS analysis helps you to make informed decisions, but it doesn't make the decisions for you. **Doing** that requires your expertise.

Generating environment, climate change and disasters indicators for use in policy decision-making in Grenada

17 - 19 Oct 2022

Thank you for your attention!

Francisco Javier Jiménez Nava, Consultant

<u>Statistics Division / Climate change and environment statistics unit Economic Commission for Latin America and the Caribbean (ECLAC)</u>

