

Economía circular en el sector de agua potable y saneamiento: Aprovechamiento de metano y eficiencia energética en municipios seleccionados de México

a PTAR San Martin de la Pirámides y Centenario

Pedro Chavarro-Ingeniero Civil y Consultor de la CEPAL

División de Recursos Naturales

Aplicación Metodología PTAR San Martín de las Pirámides

Información Básica

Año de construcción 2015 Capacidad Instalada 70 l/s Caudal Tratado 32,4 l/s

Habitantes atendidos 11.191 habitantes

Proceso de tratamiento biológico

Dual (anaerobio-aerobio) RAFP + LAC

Manejo de Lodos Lechos de secado

Disposición Final

Caracterización afluente PTAR (2021)

	Afluente	Efluente	
DQO	609 mg/l	168 mg/l	
DBO	251 mg/l	78 mg/l	

Elementos Básicos de aplicación Metodología IPCC para estimar CH₄ en PTAR

Las principales corrientes de tratamiento que generan CH₄ en una PTAR son:

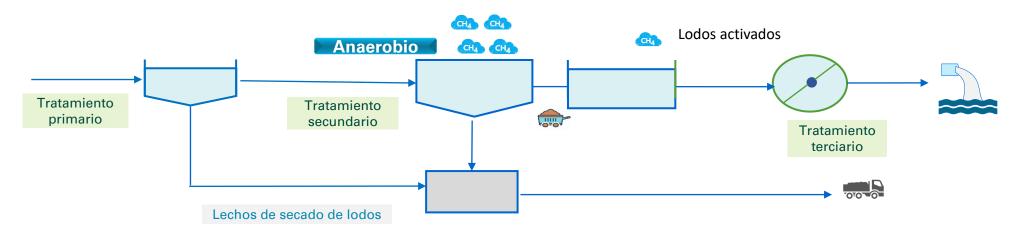
- Tratamiento biológico de ARD
 - ✓ Procesos tecnología Aerobia
 - ✓ Procesos tecnología Anaerobia
- Digestión anaerobia de lodos provenientes de proceso aerobio

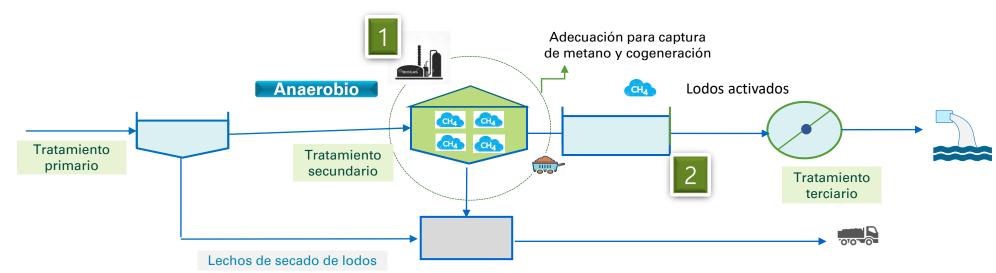
Formulas IPCC para calcular por separado las emisiones de CH₄ en estos casos:

- Tratamiento aerobio (LAC, FP)
- Tratamiento anaerobio: emisiones 80 veces mayores que procesos aerobios
 - ✓ RAFA/USSB
 - ✓ Lagunas anaerobias

Formula IPCC para calcular emisiones de digestión anaerobia de lodos generados en tratamiento aerobio ARD

La adición de digestores anaerobios de lodos a procesos aerobios de tratamiento de ARD puede incrementar en cerca de 20 veces la generación de metano

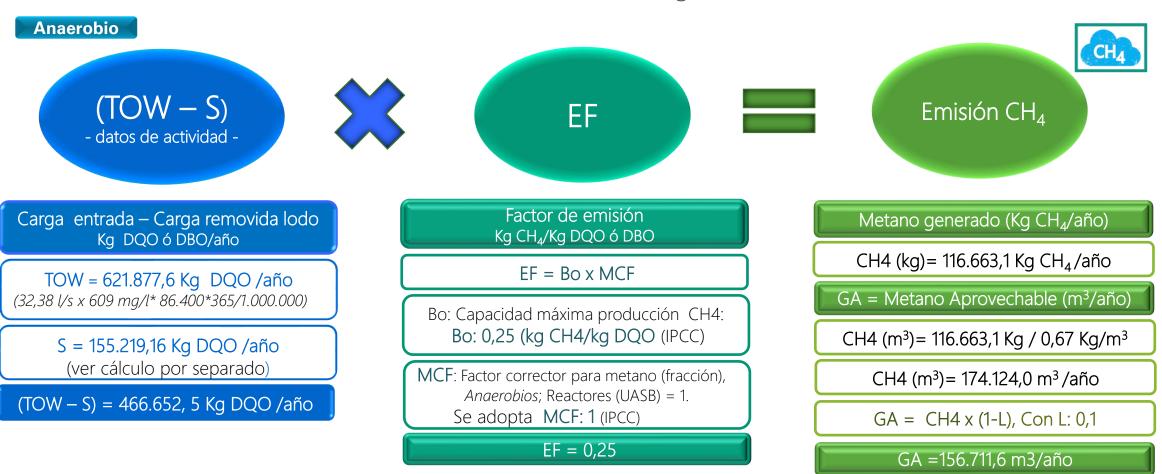




Emisión de CH₄ en PTAR San Martín de las Pirámides

Situación Actual. Sin proyecto de recuperación de CH₄

Situación con proyecto de recuperación de CH₄



Tratamiento biológico de aguas residuales - Estimación de emisiones CH₄ PTAR San Martín de las P. A. Desarrollo Metodología IPCC

Tratamiento biológico de aguas residuales. Estimación de emisiones CH₄ PTAR San Martín de las P. B. Desarrollo Metodología IPCC: Cálculo del factor S

Smass Krem Cantidad de lodo removido Componente orgánico removido Factor de lodo Kg lodo /año en AR en forma de lodo kg DBO/kg de lodo seco Kg DQO ó DBO/año Carga orgánica entrada X Factor generación lodos Lodos provenientes de tratamiento anaerobio Kg DQO aplicada/año Kg lodo/DQO aplicada Krem = 0,8 kg DBO/Kg masa lodo seco S: 155.219,1 Kg DQO /año Krem= 1,66 Kg DQO/Kg masa lodo seco (140.093 Kg lodo/año x 1 Kg DBO/Kg lodo) Carga orgánica entrada = 621.877,6 Kg DQO (0,8 X 2,08) Factor de generación de lodos ✓ Sistema aerobio o Se adopta 0,7 Kg SST (lodo)/Kg DQO (**) Smass= 93.280,7 Kg lodo/año (621.877,6 Kg DQO x 0.7 Kg lodo/ Kg DQO)

^{*} Factor de conversión de DBO a DQO

^{**} Cleverson, von Sperling y Fernandes (2007)

Tratamiento biológico de aguas residuales. Estimación de emisiones CH₄ PTAR San Martín de las P. A. Desarrollo Metodología

Aerobio

(TOW - S) - datos de actividad -

EF

Emisión CH₄

Carga entrada – Carga removida lodo Kg DQO ó DBO/año

TOW = 82.476,3 Kg DBO /año (621.871,6 Kg DQO x (1-0,724*) /2,08)

S = 25.377,3 Kg DBO /año (ver cálculo por separado)

(TOW - S) = 57.099 Kg DBO /año

* Eficiencia remoción previa de 72,4%

 $EF = Bo \times MCF$

Bo: Capacidad máxima producción CH4: Bo: 0,6 (kg CH4/kg DBO (IPCC)

MCF: Factor corrector para metano (fracción), Procesos aerobios: Varia entre 0,003 a 0,09 Se adopta MCF: 0,03 (IPCC)

EF = 0.018

CH4 (kg)= $1.028 \text{ Kg CH}_4/\text{año}$

GA = Metano Aprovechable (m³/año)

CH4 (m^3)= 1.028 Kg / 0,67 Kg/ m^3

CH4 (m^3)= 1.534 m^3 /año

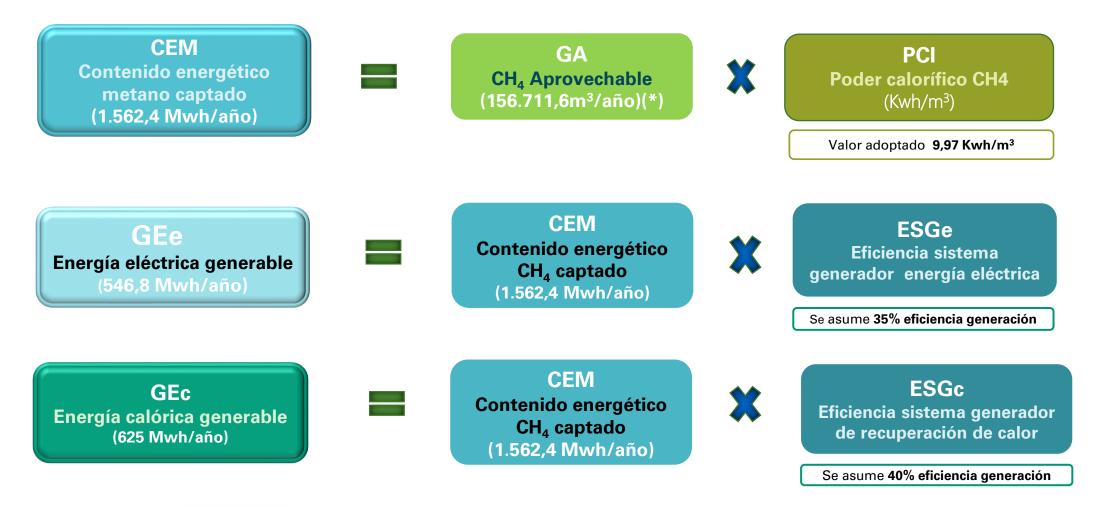
 $GA = CH4 \times (1-L), Con L: 0,1$

GA =1.380.6 m3/año

* Factor de conversión de DBO a DOO

** Cleverson, von Sperling y Fernandes (2007)

Tratamiento biológico de aguas residuales. Estimación de emisiones CH₄ PTAR San Martín de las P. B. Desarrollo Metodología IPCC: Cálculo del factor S


Krem Smass Cantidad de lodo removido Factor de lodo Componente orgánico removido Kg lodo /año en AR en forma de lodo kg DBO/kg de lodo seco Kg DQO ó DBO/año Carga orgánica entrada X Factor generación lodos Lodos provenientes de tratamiento anaerobio Kg DQO aplicada/año Kg lodo/DQO aplicada Krem = 0,8 kg DBO/Kg masa lodo seco S: 25.377,3 Kg DBO /año Carga orgánica entrada = 39.652 Kg DQO (31.727,7 Kg lodo/año x 0,8 DBO/Kg lodo) (82.476 Kg DBO /año / 2,08*) Factor de generación de lodos ✓ Sistema aerobio o Se adopta 0,8 Kg SST (lodo)/Kg DQO (**) LAC Smass=31.721,7 Kg lodo/año (200.132 Kg DQO x 0.7 Kg lodo/ Kg DQO)

CONAGUA

United Nations

Peace and Development Trust Fund

Energía eléctrica y calórica generable con base en metano – PTAR San Martín de las Pirámides

^{*}Solo se tiene en cuenta el CH₄ generado en el reactor anaerobio de tratamiento de ARD

Resumen de estimación de emisiones CH₄ y Co-generación de energía PTAR San Martín de las Pirámides

Nombre PTAR	Estimacio	Estimación de metano emitido (m³/año)				Metano recuperable (m³/año)			
	Anaerobia	Aerobia	Lodos	Total	Anaerobia	Aerobia	Lodos	Total	
San Martín de las Pirámides	174 124	1 534		175 658	156 712	-		156 712	

Nombre	Capacidad	Caudal	Metano		Contenido	Cogeneración energía	
	instalada (l/s)	tratado (l/s)	Generado (m3/año)	Recuperable (m3/año)	energético (MWh/año)	Eléctrica (MWh/año)	Calórica (MWh/año)
San Martín de las Pirámides	70,0	32,4	175 658	156 712	1 562	547	625

Fuente: Elaboración propia a partir de información reportada por CAPA y CAEM y aplicación formulas IPCC (2019)

- 1. Se destaca el aporte en la generación de metano del reactor anaerobio de tratamiento de ARD (cerca de 113 veces la emisión de la etapa aerobia)
- 2. Al proyectar co-generación con 80% de capacidad de la PTAR, se incrementa el potencial de generación de energía eléctrica en el730% (hasta 946 Mwh/año)

Aplicación Metodología PTAR Centenario

Información Básica

Entrada operación 1999 Capacidad Instalada 180 l/s Caudal Tratado 120 l/s

Habitantes atendidos 44.434 habitantes

Proceso de tratamiento biológico

Aerobio) LAC

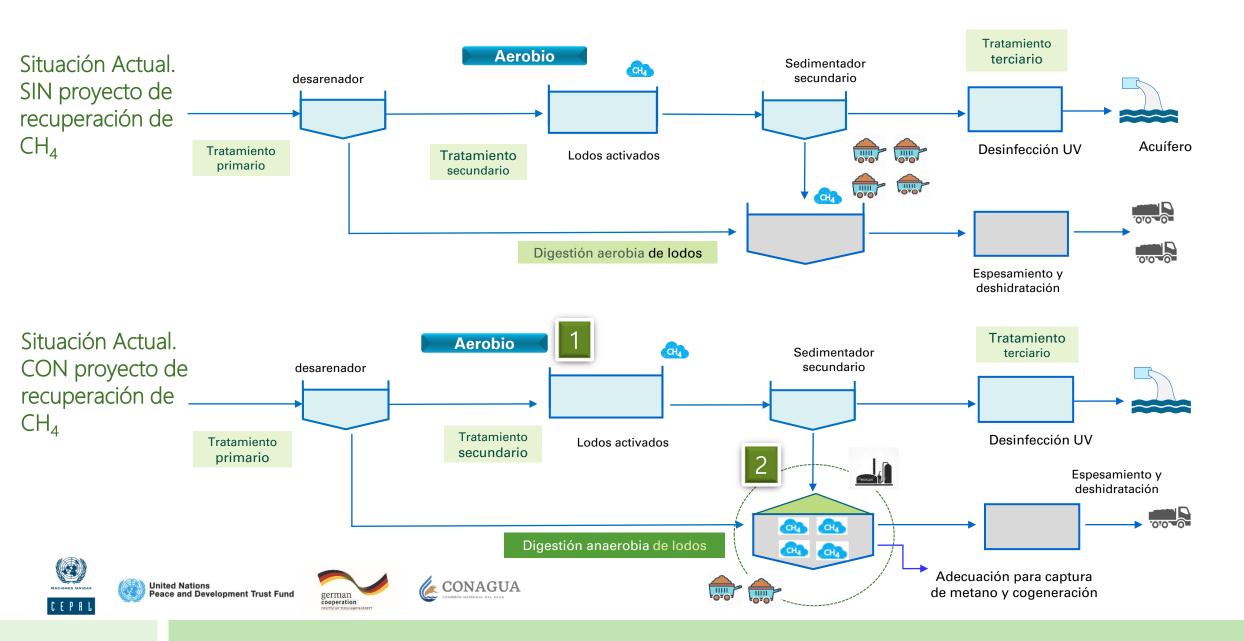
Manejo de Lodos Digestión aerobia

Lechos de secado

Deshidratación

Caracterización afluente PTAR

	2013	Estudio
DQO	175 mg/l	249,6 mg/l (*)
DBO	84,1 mg/l	120,0 mg/l (**)
SST	145 mg/l	



^{*)} Estimado a partir de descarga promedio de 350 litros/persona/día y aporte de 0,42 g de DBO/persona/día

^(**) Factor de conversión de 2,08 veces la DBO

Emisiones de CH₄ en PTAR Centenario

Tratamiento biológico de aguas residuales - Estimación de emisiones CH₄ PTAR Centenario A. Desarrollo Metodología IPCC

(TOW - S)- datos de actividad -

EF

Emisión CH₄

Carga entrada – Carga removida lodo Kg DQO ó DBO/año

TOW = 454.188,4 Kg DBO /año (44.434 hab x 42 g DBO /hab/d x 365 /1000)

> S = 174.660,9 Kg DBO /año (ver cálculo por separado)

(TOW - S) = 279.457,5 Kg DBO /año

Factor de emisión Kg CH₄/Kg DQO ó DBO

 $EF = Bo \times MCF$

Bo: Capacidad máxima producción CH4: Bo: 0,6 (kg CH4/kg DBO (IPCC)

MCF: Factor corrector para metano (fracción), Procesos aerobios: Varia entre 0,003 a 0,09 Se adopta MCF: 0,03 (IPCC)

EF = 0.018

Metano generado (Kg CH₄/año)

CH4 (kg)= $5.030,2 \text{ Kg CH}_4/\text{año}$

GA = Metano Aprovechable (m³/año)

CH4 (m^3) = 5.030,2 Kg / 0,67 Kg/ m^3

CH4 (m^3)= 7.507,8 m^3 /año

 $GA = CH4 \times (1-L), Con L: 0,1$

GA =6.757 m3/año

Tratamiento biológico de aguas residuales. Estimación de emisiones CH₄ PTAR Centenario B. Desarrollo Metodología IPCC: Cálculo del factor S

Smass Cantidad de lodo removido Componente orgánico removido

Kg lodo /año

Carga orgánica entrada X Factor generación lodos Kg DQO aplicada/año Kg lodo/DQO aplicada

Carga orgánica entrada = 218.326,1 Kg DQO (454.188,4 Kg DBO /año / 2,08*)

Factor de generación de lodos

- ✓ Sistema aerobio
- o Se adopta 0,7 Kg SST (lodo)/Kg DQO (**)

Smass=174.660,9 Kg lodo/año (218.326,1 Kg DQO x 0.7 Kg lodo/ Kg DQO)

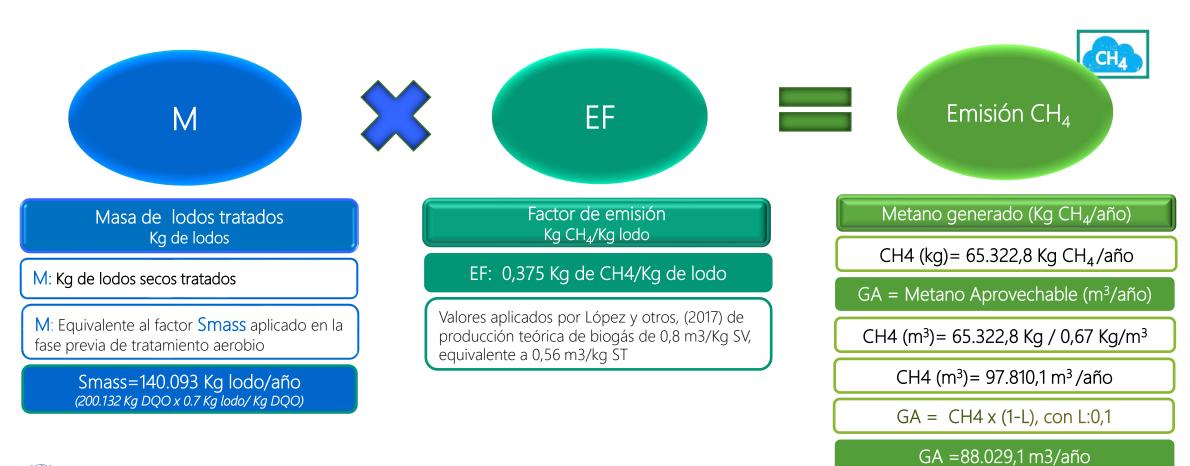
Factor de lodo kg DBO/kg de lodo seco

Krem

Lodos provenientes de un tratamiento aerobio Krem = 1 kg DBO/Kg masa lodo seco

en AR en forma de lodo Kg DQO ó DBO/año

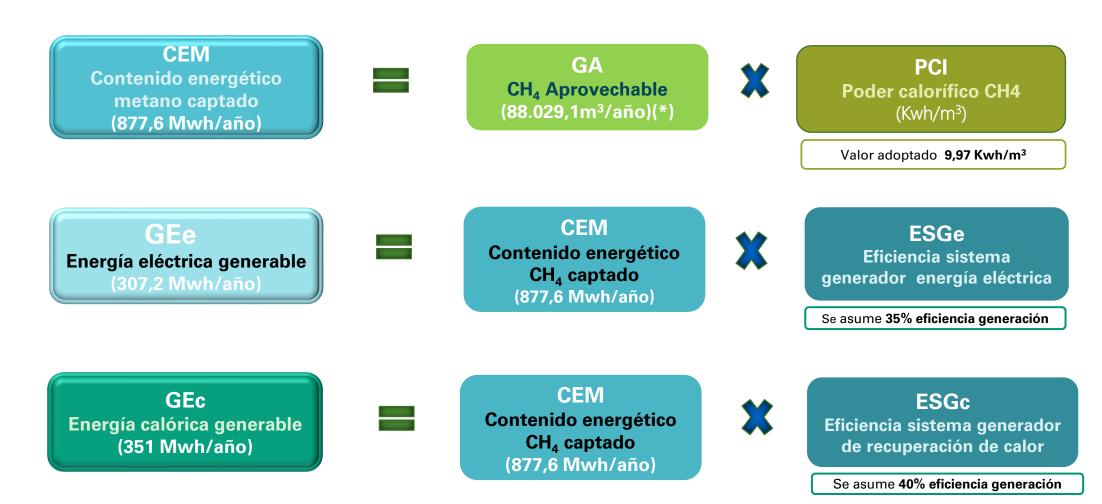
S: 174.660,9 Kg DBO /año (174.660,9 Kg lodo/año x 1 Kg DBO/Kg lodo)



^{*} Factor de conversión de DBO a DQO

^{**} Cleverson, von Sperling y Fernandes (2007)

Digestión anaerobia de lodos aerobios - Estimación de emisiones CH₄ PTAR Centenario Desarrollo Metodología IPCC



Energía eléctrica y calórica generable con base en metano – PTAR Centenario



Resumen de estimación de emisiones CH₄ y Co-generación de energía PTAR Centenario

	Estimacio	Estimación de metano emitido (m³/año)			Metano recuperable (m³/año)			
Nombre PTAR	Anaerobia	Aerobia	Lodos	Total	Anaerobia	Aerobia	Lodos	Total
Centenario	-	7 508	97 810	105 318	-	-	88 029	88 029

Nombre PTAR	Capacidad	Caudal	Metano		Contenido	Cogeneración energía	
	instalada (l/s)	tratado (l/s)	Generado (m³/año)	Recuperable (m³/año)	energético (MWh/año)	Eléctrica (MWh/año)	Calórica (MWh/año)
Centenario	180,0	120,0	105 318	88 029	878	307	351

Fuente: Elaboración propia a partir de información reportada por CAPA y CAEM y aplicación formulas IPCC (2019)

- 1. Se destaca el incremento sustancial de la generación de metano al incorporar digestión anaerobia de lodos (cerca de 14 veces)
- 2. Al proyectar co-generación con 80% de capacidad de la PTAR, se incrementa el potencial de generación de energía eléctrica en el 20% (hasta 369 Mwh/año)
- 3. La disminución del volumen final de lodos por la incorporación de digestor anaerobio, representa beneficios en reducción de costos de manejo y disposición final de lodos

¡Muchas Gracias!

