

SYNERGIES OF LOW CARBON TECHNOLOGIES AND LAND-SPARING IN BRAZILIAN REGIONS

Cicero Zanetti de Lima

Posdoctoral research associate Sao Paulo School of Economics Fundação Getulio Vargas cicero.lima@fgv.br

Angelo Costa Gurgel Sao Paulo School of Economics

Erly Cardoso Teixeira Universidade Federal de Viçosa

> 6th Regional Meeting of Public Policy Analysis with CGE Models November, 7-8 2017 Lima, Peru

OUTLINE

- 1. Introduction and presentation
- 2. Motivation
- 3. Research objective
- 4. The BREA model v1.0
- 5. Outcomes
- 6. Conclusions

Motivation

November 15, 2017

6th Regional Meeting CGE models

Sources: CEPEA, CNA, MAPA, MDIC

Vegetal production (million ton) and planted area (million ha)

Motivation

Livestock production (million ton)

Sources: ABIEC. ABPA. Nota: Suínos. valor estimado.

Motivation

Pasture area (Mha) and livestock productivity (@/ha) in Brazil (1990-2016)

Source: Agroconsult/IBGE

Brazil and climate change

2009

COP-15 Copenhagen – Denmark

Voluntary commitment to reduce GHG emissions

37% below 2005 levels in 2025 43% below 2005 levels in 2030

National Plan for Climate Change (PNMC) released in December, 2009

Several sectorial plans

ABC Plan (until 2020)

recover 15 Mha of degraded pasture increase integrated systems in 4 Mha other actions 2015

••••

COP-21 Paris – France

Brazilian iNDC reinforces the importance of low-carbon agriculture to reduce GHG emissions

Period 2020-2030

Recover +15 Mha of degraded pasture Increase +5 Mha integrated systems

Energy Industrial Proc. Agriculture Land Use Change Residues

ABC Plan

- Agro-environmental policy
- Mitigate GHG emissions in agriculture, improve efficiency in the use natural resources and increase the resilience of productive systems and rural communities, as well as enable the sector to adapt to climate change
- Investments in sustainable technologies

RESEARCH QUESTIONS

- What will be the effects of the ABC Plan for the economic growth in terms of welfare and aggregate production?
- What will be the impacts on sectoral production and their effects on other sectors and their trade flows?
- What will be the new pattern of land use and regional production given the large volume of degraded areas that will be recovered?

Brazilian Economic Analysis model

- Static computable general equilibrium model, base year 2009
- Multi-regional and multi-sector model
- Six regions: South, Southeast, Center-West, Northeast, Northeast Cerrado, and North
- Land-use in 8 categories: crops, pasture, degraded pasture, natural forest (public and private), managed forest, planted forest, natural areas, and unused*.
- The model is based on GTAPinGAMS nomenclatura
- MPSGE
- Solved as a nonlinear mixed complementarity problem in GAMS

Brazilian Economic Analysis model

Regional aggregation

Technology representation

Land-use supply function

CET function controls the land supply

Total area in Brazil: ~851 Mha

Land-use dataset

- 2006 Agricultural Census
- 2009 PPM and PAM
- Total pasture and native vegetation from LAPIG
 - Degraded pasture: Observatório ABC

Pasture and degraded pasture areas in the base year.

	Pas	sture (1,000	ha)	Levels of degradation		
Regions	Total	Degraded	Occupatio	Very high	High	
	Total		n rate	0 <= or <= 0.4	0.4 < or <=0.75	
South	17,740	5,663	0.59	403	5,260	
Southeast	28,480	8,398	0.56	1,231	7,168	
Center-West	37,743	1,232	0.65	10	1,222	
North	34,325	1,834	0.54	461	1,373	
Northeast	14,259	11,317	0.38	6,586	4,731	
Northeast Cerrado	36,248	19,775	0.32	13,627	6,148	
Total	168,794	48,220	0.51*	22,317	25,903	

* Average of all regions

Backstop technologies

Pasture recovery

CGE modelling representation

Backstop technologies

Integrated systems (IS)

iCL - maize

iSLF - forestry

Backstop technologies

Modelling IS in a CGE framework

Scenarios

Non-priority

- recover 15 Mha of degraded pasture
- increase the integrated systems in 4 Mha
- freely movement of the investments in these technologies

Priority

- recover 15 Mha of degraded pasture
- increase the integrated systems in 4 Mha (observed data)
- the technologies are strictly used in priority regions defined by the degraded pasture level in the model benchmark

Combined

- recover 15 Mha of degraded pasture
- increase the integrated systems in 4 Mha (observed data)
- the assumption over priority areas is relaxed

Land-use changes

Aggregated land-use changes under different scenarios.

6th Regional Meeting CGE models

Regional land-use changes

Land-use changes

Area of each integrated systems under different scenarios (1,000 ha).

Area of integrated systems by region

Integrated systems

 Index of production value per hectare by integrated systems compared to single production (*Combined Scenario*).

ICL technology	maize-livestock		soybean-livestock		soybean-livestock-forestry		
	maize	cattle	soybean	cattle	soybean	cattle	forestry
South	1.095	1.097	-	-	1.090	1.088	1.089
Southeast	1.023	1.021	1.018	1.017	1.024	1.025	1.023
Center-West	-	-	1.041	1.039	1.016	1.015	1.015
North	1.074	1.080	1.085	1.087	1.056	1.057	1.056
Northeast	-	-	-	-	-	-	-
Northeast Cerrado	1.181	1.182	1.188	1.185	1.195	1.197	1.194

Macroeconomic outcomes

Welfare

Conclusions

- These results and the interests of different stakeholder groups can help adjust policies to improve their efficiency in achieving desired outcomes
- Policies which do not force the pasture recovery on specific geographical areas, but let the farmers choose where to implement it are more effective and less expense per hectare
- The results have shown that the pasture recovery associated to the IS technologies are land-saving technologies
- Great opportunity for livestock intensification as well as reduce the pressure to clear new natural areas
- Areas with natural vegetation and forests increase (Southeast and South), while reduce in the Center-West region (Cerrado biome) and North (Amazon biome)

Conclusions

- Greater specialization in crop production (Southeast and South) and livestock production (Center-West and North)
- IS with soybean has shown economic advantages across regions, specially without enforce policy
- The IS can improve the efficacy of investments, intensify land use, and provide a stable productive system (20% in the Northeast Cerrado region)
- Livestock integration the landholders have more options for diversification and consequentially additional income.
- Uncertainties concern credit data and investments destination, as well as the total areas already recovered and with IS
- The projections indicate the urgency to increase the rates of pasture recovery and IS to achieve the commitment until 2020

Conclusions

- Further work...
- Track volume of production and heads in livestock sector
- Track GHG emissions, specially in the IS systems
- Turn on double cropping representation
- Evaluate if the GHG emissions associated to the demand of chemicals sectors, as well as energy sectors could off-set the mitigation potential of these technologies

THANK YOU!

cicero.lima@fgv.br http://www.cicerolima.com