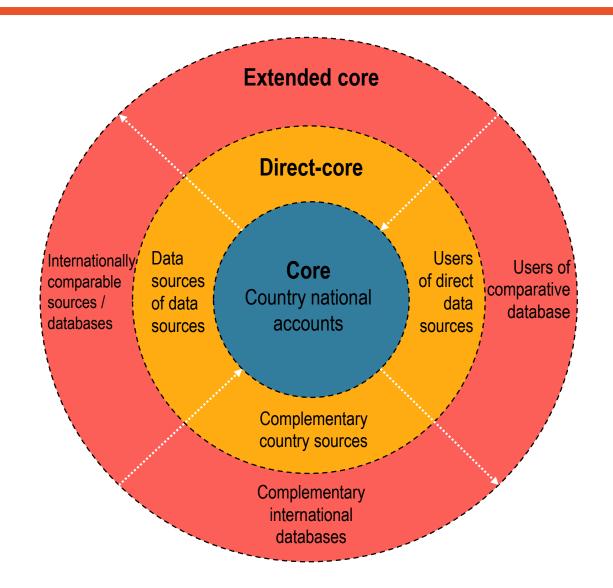
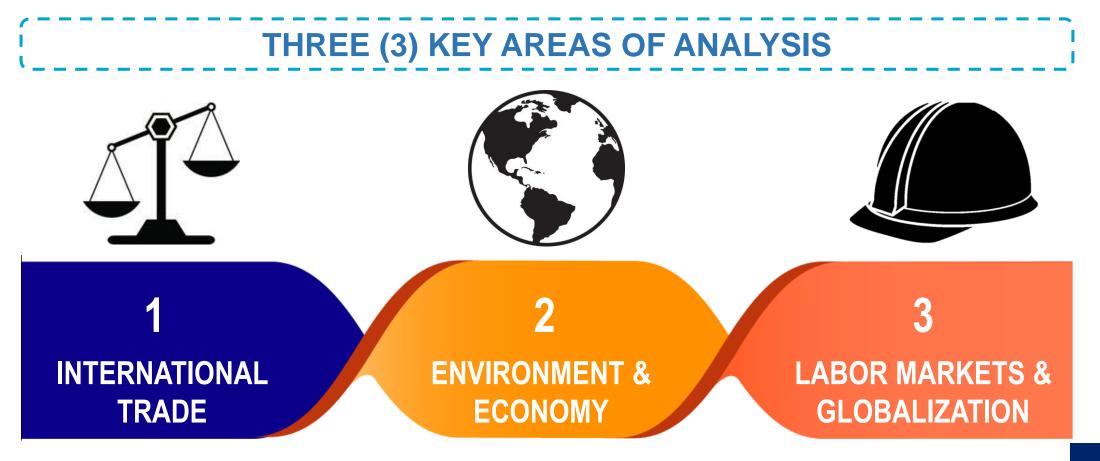

Compilation and uses of the Multi-Country Input-Output tables: Lessons from the ADB MRIO database

Bangkok, Thailand


11 July 2019

Objectives


AD

Data partners and stakeholders

Why compile multiregional IOTs?

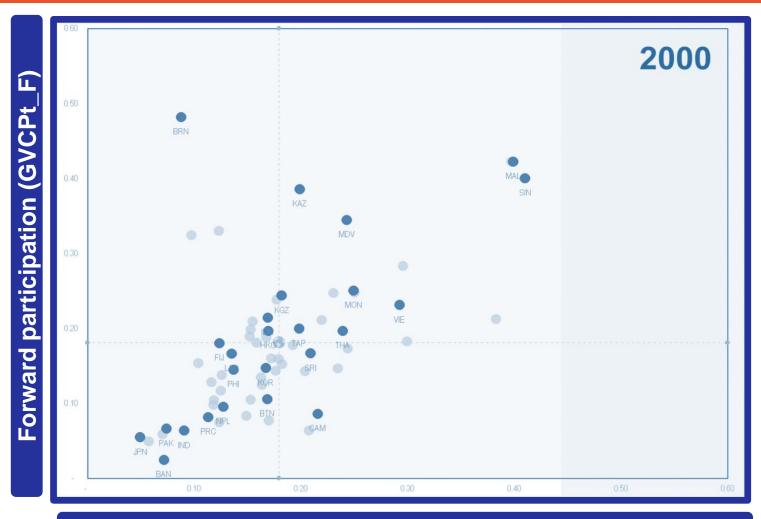
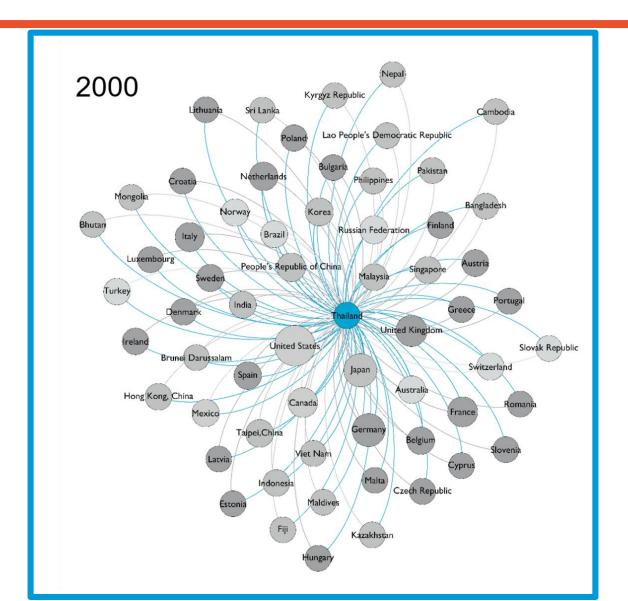
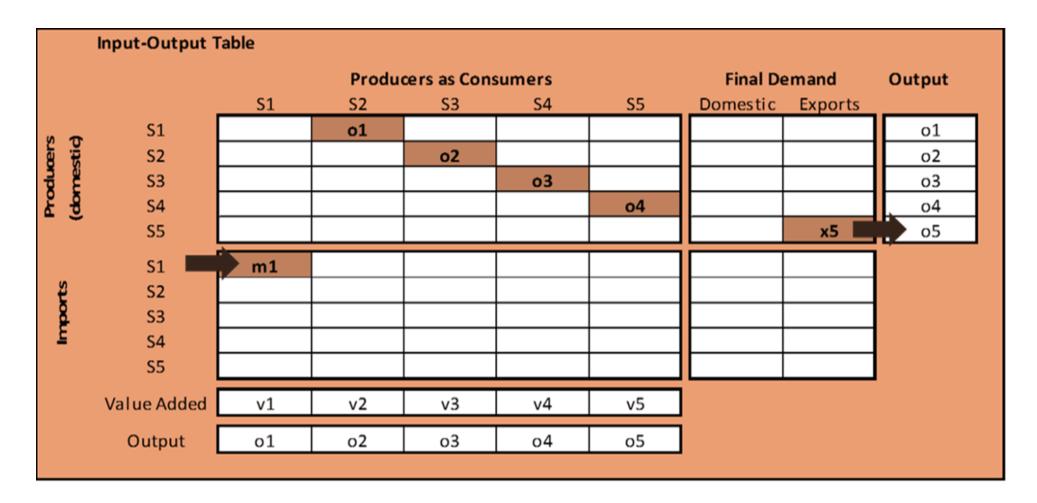


Illustration of uses of MRIO


Illustration of uses of MRIO

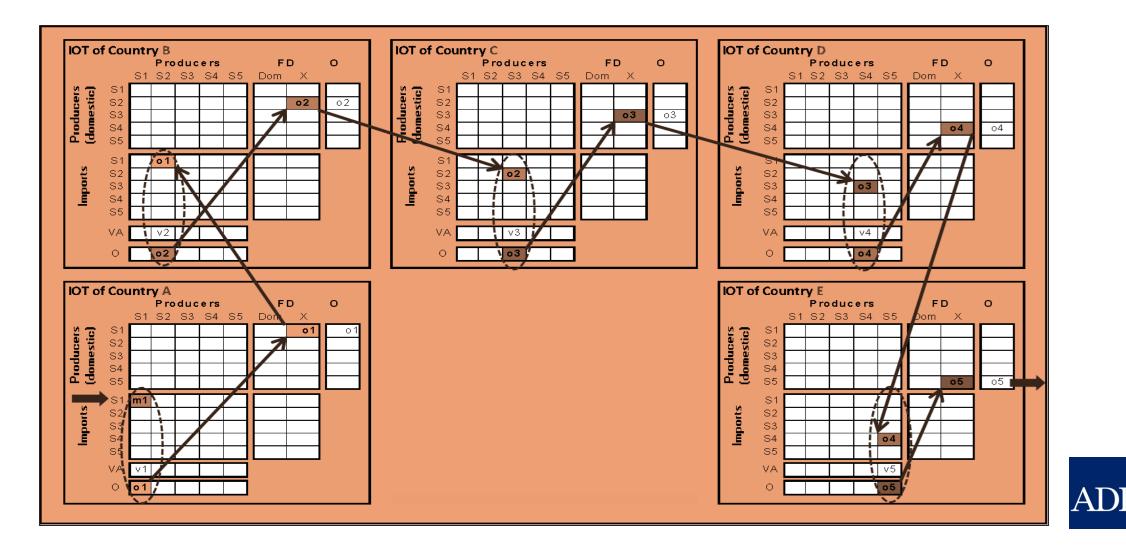
Backward participation (GVCPt_B)

Illustration of uses of MRIO



Overview of the main features of the various databases

Database	Number of countries	Number of products and industries	Years
AIIOT (IDE-JETRO)	10 (8 for 1975 table)	75 products (56 for 1975 table, 77 for 1985 table)	1975, 195, 1990, 1995, 2000, 2005
EORA MRIO	187 countries	Varying across countries; simplified version with 26 industries	1990-2013
EXIOBASE Versions 2 and 3 are more enhanced	43 countries; 5 world regions	220 products; 163 industries	2000, 2007
FIGARO	28 EU countries; USA; Rest of the World	64 industries; 64 products	2010; 2010-2017 in progress
Global MRIO LAB	220 countries	Flexible choice: 6357 products, industry root classification	1990-2015 (preliminary data)
GTAP-MRIO	140 GTAP regions	57 GTAP commodities	2004, 2007, 2011
OECD-ICIO	64 (including Rest of the World)	34 industries; 34 products	1995-2011 (ISIC 3; nowcasted 2012- 2014); 2005-2011 (ISIC 4)
WIOD (2013 and 2016 release versions)	43 (including Rest of the World)	64 products; 56 industries	2000-2014
ADB MRIO	63 (including Rest of the World)	Varying SUT dimensions; harmonized to 35 industries	2000; 2007-2017 (2018 update on- going)



Stylized production chains in the Input-Output framework

Mapping production fragmentation in the IO framework

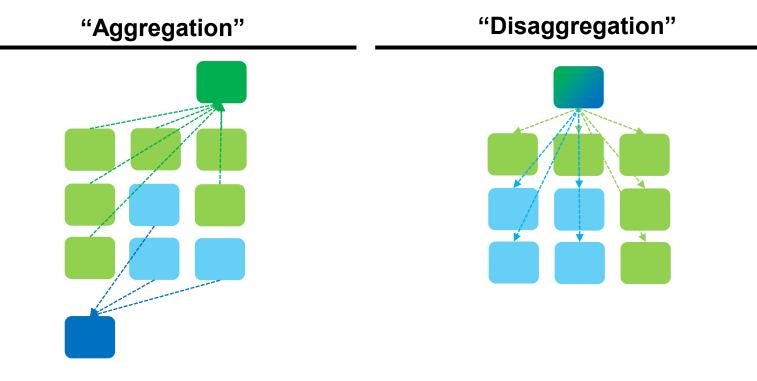
Schematic of multi-country / multi-regional inputoutput tables (MRIO)

		COUNTRY A	COUNTRY B	R.O.W.	COUNTRY A	COUNTRY B	R.O.W.	
		Intermediate	Intermediate	Intermediate	Final	Final	Final	TOTAL
		Industry	Industry	Industry	Industry	Industry	Industry	
COUNTRY A	Industry	Intermediate use of domestic output	Intermediate use by B of exports from A	Intermediate use by R.o.W. of exports from A	Final use of domestic output	Final use by B of exports from A	Final use by R.o.W. of exports from A	OUTPUT IN A
COUNTRY B	Industry	Intermediate use by A of exports from B	Intermediate use of domestic output	Intermediate use by R.o.W. of exports from B	Final use by A of exports from B	Final use of domestic output	Final use by R.o.W. of exports from B	OUTPUT IN B
Rest of the World	Industry	Intermediate use by A of exports from R.o.W.	Intermediate use by B of exports from R.o.W.	Intermediate use of domestic output	Final use by A of exports from R.o.W.	Final use by B of exports from R.o.W.	Final use of domestic output	OUTPUT IN R.O.W.
		Value Added	Value Added	Value Added				
		Output in A	Output in B	Output in R.O.W.				

ADE

Major compilation issues

ISSUES


SOLUTIONS

Harmonization of product and industry classification	Use of standard bridge tables; Disaggregation using alternative sources
Availability of national data (SUTs)	Non-survey methods Extrapolation / interpolation techniques
Bilateral trade matrices and the problem of trade asymmetries	Dual approach (OECD TiVA Expert Group) Alternative sources / data confrontation
Proportionality assumption	'Import use' ratios; BEC classification; modelled estimates from other sources
Reconciliation and balancing	Investigative approach; Automated balancing for final round-up

Diversity in classifications and dimensions of constituent national IOTs

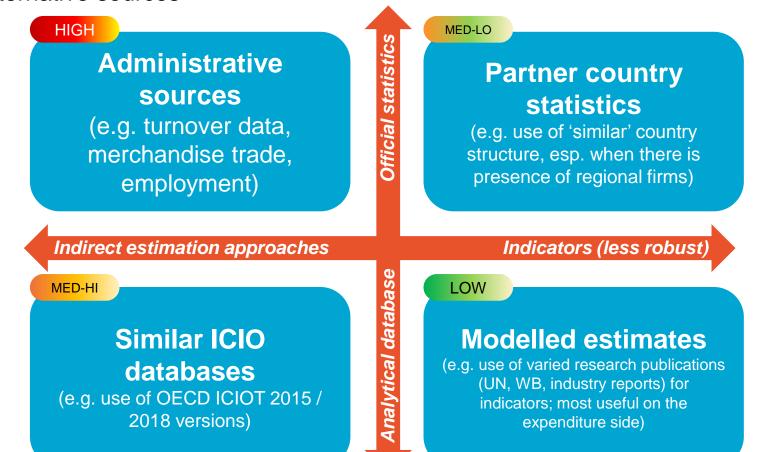
- Objective: *augment* existing world input-output tables (Timmer et al., 2015) by expanding to include 19 participating economies under ADB's R-CDTA 8838
- Key publication: <u>Compendium of Supply and Use Tables for Selected Economies in Asia and the</u>
 <u>Pacific (2017)</u>
- Varying product dimensions, depending on the structure of the economy

Diversity in classifications and dimensions of constituent national IOTs

AGGREGATION APPROACH

- Heavy use of <u>correspondence tables published by UNSD</u>
- Mainly ISIC 3 for industries
- Trade-off between the level of uniformity and the level of information embedded in generating consistent multi-country SUTs and IOTs (UN SUT Handbook para 17.32)

ROM / TO	ISIC Rev. 2	ISIC Rev. 3	ISIC Rev. 3.1	ISIC Rev. 4
SIC Rev. 2	-			-
SIC Rev. 3		-		-
SIC Rev. 3.1	-		-	
SIC Rev. 4	-	-		-
CPC Ver. 1.1	-	-		-
CPC Ver. 2	-	-	-	
CPC Ver. 2.1	-	-	-	
COFOG	-	-		-


ISIC Rev. 4	-	-	-		
ISIC Rev. 3.1	-	-		-	-
ISIC Rev. 3			-	-	-
CPC Ver. 2.1	-	-	-		-
CPC Ver. 2	-	-		-	
CPC Ver. 1.1			-		-
CPC Ver. 1.0		-		-	-
CPC pro v	-			-	-
FROM / TO	CPC prov	CPC Ver. 1.0	CPC Ver. 1.1	CPC Ver. 2	CPC Ver. 2.1

Diversity in classifications and dimensions of constituent national IOTs

DISAGGREGATION APPROACH

Reliance on alternative sources

Major compilation issues

ISSUES	SOLUTIONS
Harmonization of product and industry classification	Use of standard bridge tables; Disaggregation using alternative sources
Availability of national data (SUTs)	Non-survey methods Extrapolation / interpolation techniques
Bilateral trade matrices and the problem of trade asymmetries	Dual approach (OECD TiVA Expert Group) Alternative sources / data confrontation
Proportionality assumption	'Import use' ratios; BEC classification; modelled estimates from other sources
Reconciliation and balancing	Investigative approach; Automated balancing for final round-up

ADB

Availability of timeseries national SUTs/IOTs for 63 economies

- Option 1: Trends and extrapolation anchored on annual national accounts statistics, direct input coefficients of benchmark year; normalized such that each element adds up to control figures (see for instance Timmer et al, 2013; Eurostat 2008); Back casting techniques using 'balanced' bilateral trade database of BACI
- Option 2: Marginal inputs coefficients (Miller & Blair, 2009) relate the change (from year t r to year t) in the amount of input i purchased by industry j to the change (over the same period) in the total amount of j produced.

Marginal changes

$$a_{ij}^*(t) = \frac{z_{ij}(t) - z_{ij}(t-r)}{x_j(t) - x_j(t-r)} = \frac{\Delta z_{ij}}{\Delta x_j}$$

 Option 3: G-RAS (Temurshoev 2013) and M-RAS algorithm (Paelinck and Waelbroeck 1963)

Major compilation issues

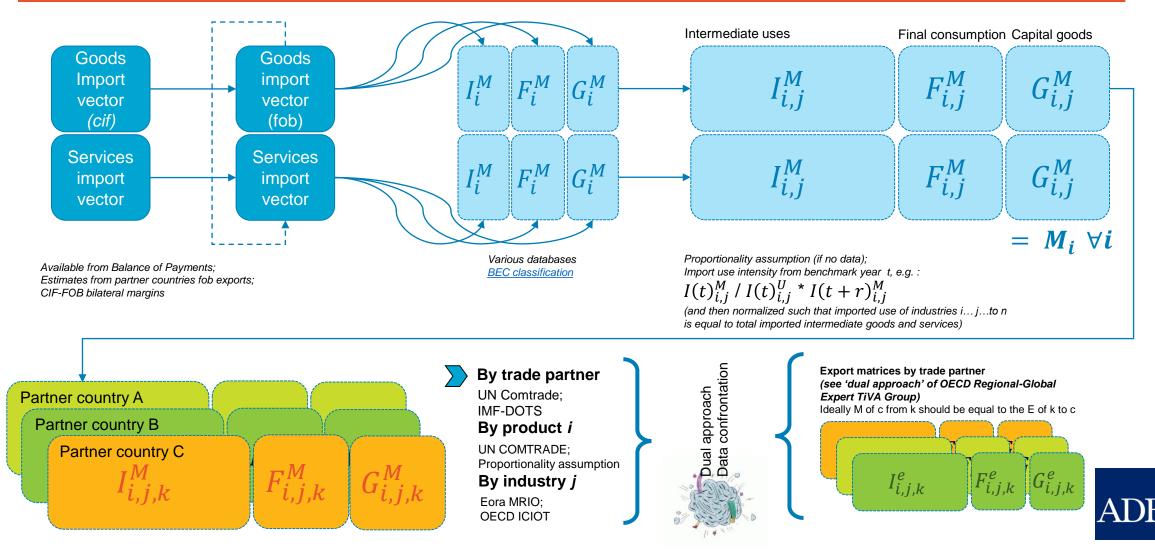
ISSUES	SOLUTIONS
Harmonization of product and industry classification	Use of standard bridge tables; Disaggregation using alternative sources
Availability of national data (SUTs)	Non-survey methods Extrapolation / interpolation techniques
Bilateral trade matrices and the problem of trade asymmetries	Dual approach (OECD TiVA Expert Group) Alternative sources / data confrontation
Proportionality assumption	'Import use' ratios; BEC classification; modelled estimates from other sources
Reconciliation and balancing	Investigative approach; Automated balancing for final round-up

Construction of bilateral trade matrices: Problem of trade asymmetries

MAIN CAUSES (see Guo, Webb and Yamano (2009); Hamanaka (2011))

Factors	Causes	Change in Price and/or Quantity
Unavoidable factors	FOB–CIF difference • freight cost • insurance costs	Price
Structural differences between two customs offices	 Coverage differences in rules of origin (especially in the cases of re-export) processing zone returned goods Time lag 	Quantity Quantity
	Exchange rate	Price
Deliberate misreporting by traders and errors committed by customs offices	False declaration of value by traders False declaration of origin by traders Commodity misclassification by customs Direction misclassification by customs	Quantity and Price Quantity Quantity Quantity

Construction of bilateral trade matrices: Preliminaries


- Moving towards dual approach (export / import) of the OECD Regional-Global TiVA Expert Group
- Important data sources:
 - 1) UN Comtrade (by trade partner; HS-6 digit);
 - 2) Data published by national statistics agencies (for missing years / countries (e.g. for splitting BEL-LUX economic union; Taipei,China));
 - 3) IMF Direction of Trade Statistics (IMF-DOTS);
 - 4) Other MRIOs

Priority scale

5) Observatory of Economic Complexity (OEC-MIT)

Construction of bilateral trade matrices: Broad algorithm sketch

Construction of bilateral trade matrices: Problem of trade asymmetries

SOME INVESTIGATIVE APPROACHES:

- Which trade flow? Imports are usually recorded with more accuracy than exports because imports generally generate tariff revenues while exports don't (Based on WITS, echoed by Timmer et al 2012)
- Which reporter? Reliability indicators (Guo, Webb, and Yamano (2009) and Gehlhar, Wang and Yao (2008), and more recently Fortanier & Sarrazin (2016; 2017) suggest indicators for reporter reliability based on discrepancies at the commodity-partner level.
 E.g. reported exports and imports are then reconciled using a "symmetry index" that gives more weight to those countries whose data more often agree with those of their trading partner

$$SI_{ikt}^{x} = \sum_{j} \frac{X_{ijkt}^{r}}{X_{ijkt}}$$
 and $SI_{ikt}^{m} = \sum_{j} \frac{M_{ijkt}^{r}}{M_{ijkt}}$

Where X^r and M^r reflect retained exports and retained imports, i.e. those bilateral flows that meet certain criterion (e.g. 30% in the case of <u>OECD BATIS</u>).

 Top-down approach is also used which checks highest levels of aggregation before looking at subcomponents; enables compiler to flag misdirected and misclassified trade.

Major compilation issues

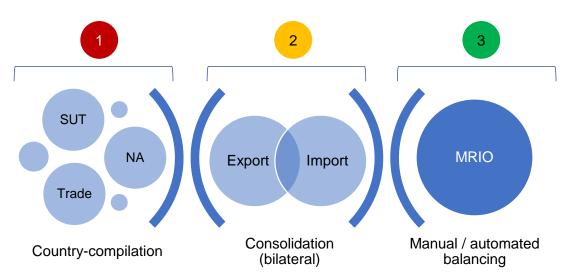
ISSUES	SOLUTIONS
Harmonization of product and industry classification	Use of standard bridge tables; Disaggregation using alternative sources
Availability of national data (SUTs)	Non-survey methods Extrapolation / interpolation techniques
Bilateral trade matrices and the problem of trade asymmetries	Dual approach (OECD TiVA Expert Group) Alternative sources / data confrontation
Proportionality assumption	'Import use' ratios; BEC classification; modelled estimates from other sources
Reconciliation and balancing	Investigative approach; Automated balancing for final round-up

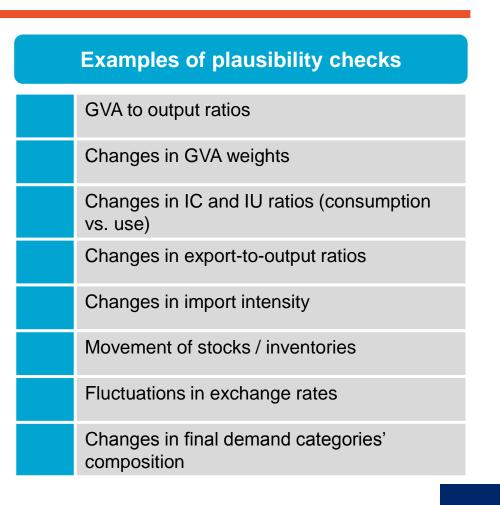
ADB

Moving away from proportionality assumption

CURRENT APPROACHES TO 'DISTURB' THE PROPORTIONALITY ASSUMPTION:

- BEC / BTDIXE (By end-use classification)
- OECD Dual approach (reconciliation of export matrix and import matrix by trade partner)
- Import use estimates (currently at the aggregate reporting country level; ratios by sourcing partners derived from bilateral trade databases)
- Breakdown from BOP (e.g. to split travel between IC and FC, see for instance para. 17.76 of the UN SUT Handbook)


Major compilation issues

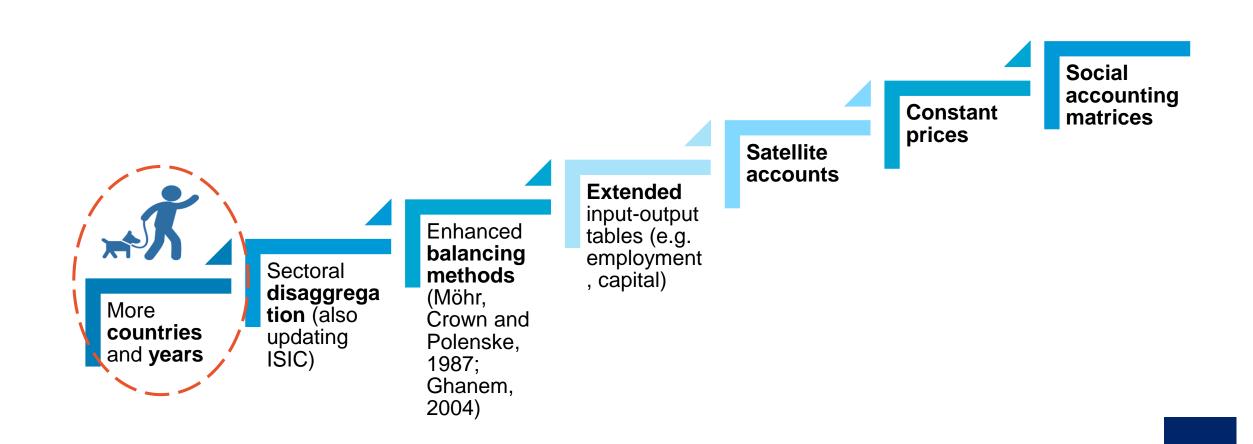

ISSUES	SOLUTIONS
Harmonization of product and industry classification	Use of standard bridge tables; Disaggregation using alternative sources
Availability of national data (SUTs)	Non-survey methods Extrapolation / interpolation techniques
Bilateral trade matrices and the problem of trade asymmetries	Dual approach (OECD TiVA Expert Group) Alternative sources / data confrontation
Proportionality assumption	'Import use' ratios; BEC classification; modelled estimates from other sources
Reconciliation and balancing	Investigative approach; Automated balancing for final round-up

ADB

Reconciliation and balancing methods

- Manual balancing: 35 sectors, 63 "economies", 2000-2018*
 - Evaluation of underlying sources
 - Before and after comparison
 - · Commodity flow approach for 'rest of the world'
 - Timeseries analysis (checks for outliers)
- Modified RAS approach (separately for domestic and external trade matrices)
- Feedback from users (simulations)

Takeaways


Disaggregated view of the global economy

Ensuring data quality starts at the basic data, building upon the efforts and expertise of many statistical partners (both national and international)

Integration and reconciliation warrants multiple approaches: not all discrepancies can be treated mathematically, and not all mathematical solutions are absent of economic reasoning

Ways forward

AD]

Thank you very much for your attention!

