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Abstract Mixed extreme value models (Mı́nguez et al.,

Stoch Environ Res Risk Assess 27:757–768, 2013b) have

proved to be an appropriate tool for dealing with wave

maxima because they take full advantage of upper tail

information from both (1) hindcast or wave reanalysis and

(2) instrumental records, which reduces the uncertainty on

return level estimates. However, in order to characterize

stochastically the differences between instrumental and

reanalysis maxima, the method developed in Mı́nguez et al.

(Stoch Environ Res Risk Assess 27:757–768, 2013b) only

uses information about annual maxima. This technical note

revisits the MEV method so that those differences between

instrumental and reanalysis maxima could be characterized

using information on independent storm peaks, instead of

annual extremes. This strategy increases the size of data

sets during the estimation process, reducing uncertainty.

The revisited mixed extreme value model is illustrated

using data from the same location studied in Mı́nguez et al.

(Stoch Environ Res Risk Assess 27:757–768, 2013b), and

results are compared.

Keywords Design return periods � Extreme waves �
Wave reanalysis

1 Introduction

Extreme wave climate analysis is of paramount importance

for the design of coastal and offshore structures. For this

reason, the proper characterization of wave climate has

been and still is an intensive area of research within the

scientific and engineering community. Traditionally, all

steps involved within the design process are based on

instrumental records (mainly buoy), however, over the last

decade, and in an attempt to improve the knowledge about

wave climate, there has been an outstanding development

of wave reanalysis models. These models allow a detailed

description of wave climate in locations where long-term

buoy records do not exist.

Scientists and engineers have started using these data

bases for design purposes. However, as pointed out by

several authors (Caires and Sterl 2005; Cavaleri and Sclavo

2006; Mı́nguez et al. 2011, 2012; Reguero et al. 2012),

there are discrepancies when comparing reanalysis versus

instrumental data, which must be accounted for within the

design process. These authors propose several calibration/

correction techniques, which are valid for most of the range

of the wave height probability distribution except for the

upper tail. Note that there is an statistical theory of extreme

values (EVT) (Castillo 1988; Coles 2001; Katz et al. 2002;

Castillo et al. 2005) that provides the mathematical

framework for modeling the tail distribution and none of

those calibration/correction techniques is consistent with

this EVT.

To fill this niche, Mı́nguez et al. (2013b) proposes the

mixed extreme value (MEV) climate model. This method

allows correcting discrepancies between instrumental and

reanalysis records in the upper tail and it is consistent with

EVT. However, in order to characterize stochastically the

differences between instrumental and reanalysis maxima,
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the method developed in Mı́nguez et al. (2013b) only uses

information about annual maxima, and it is not possible to

apply methods such as Pareto-Poisson (Leadbetter et al.

1983) or Peaks Over Threshold (POT, Davidson and Smith

1990), which are known to be more robust because they use

more information during the estimation process. Note that

within MEV it is possible to apply those methods only for

the reanalysis data, however, the final convolution is per-

formed in terms of annual maxima.

The aim of this paper is to revisit the MEV method so

that those differences between instrumental and reanalysis

maxima could be characterized using information on

independent storm peaks, instead of annual maxima. This

strategy increases the size of data sets during the estimation

process, reducing uncertainty. Besides, this method is

specially convenient in locations where short records of

instrumental data are available, such as the case for under

developing countries, or the analysis of design locations for

the off-shore industry.

The rest of the technical note is organized as follows.

Section 2 presents the proposed RMEV model. Section 3

shows the performance on real data from a given location

in the North of Spain. Note that we use the same example

as Mı́nguez et al. (2013b). Finally, in Sect. 4 relevant

conclusions are drawn.

2 Revisited mixed extreme value analysis model

MEV model proposed in Mı́nguez et al. (2013b) relies on

the following assumptions:

1. The annual maximum reanalysis random variable X

follows any distribution for maxima FXðx; hXÞ.
2. The random variable Y corresponding to the difference

between instrumental and reanalysis data conditioned

to the annual reanalysis maximum data (X) follows a

normal distribution, i.e. fY jXðyÞ�NðlY jX ; r
2
Y jXÞ.

According to these assumptions, the MEV extreme value

model can only use annual maxima information to char-

acterize the differences between instrumental and reanal-

ysis data, and in case of working with Peak Over Threshold

methods, this constraint does not allow to use all differ-

ences available among reanalysis storm peaks and their

corresponding instrumental records. Alternatively, the

RMEV is based on the following alternative assumptions:

1. The number of independent storm peaks N exceeding

threshold u in any one year follows a Poisson

distribution with parameter k.

2. The random variable X associated with independent

reanalysis storm peaks follows a distribution with

cumulative distribution functions FXðx; hXÞ. According

to Davidson and Smith (1990) this distribution function

may correspond to Pareto, and this distribution is used in

this paper, however the functioning of the proposed

method is not limited to this parametric distribution.

3. The random variable Y corresponding to the difference

between instrumental and reanalysis data conditioned

to the reanalysis storm peak (X) follows a normal

distribution, i.e. fY jXðyÞ�NðlY jX ; r
2
Y jXÞ.

Considering assumption (1) from RMEV, instead of deal-

ing with the annual maximum random variable, we work

with the random variable related to storm peaks

Z ¼ X þ Y . Its corresponding cumulative distribution

function, according to assumptions (2) and (3), is equal to:

FZðzÞ ¼
Z1

u

fXðx; hXÞU
z� x� lY jX

rY jX

� �
dx; ð1Þ

where Uð�Þ is the cumulative distribution of the standard

normal random variable. Note that the integration limits

range from u to ? since we are assuming the use of Pareto,

however, these limits may change depending on the type of

probability density function used for X.

The structure of the RMEV model is the same as the MEV,

but the data used in the analysis is different. Regarding the

numerical solution of the integral in (1), the same recommen-

dations given for the MEV method still apply, i.e., the adaptive

Gauss–Kronrod quadrature method (Shampine 2008) is the

most appropriate, since it supports infinite intervals and can

handle moderate singularities at the endpoints.

However, the cumulative distribution function given by (1)

does not correspond to annual maxima, which is usually the

information required for engineering design. Considering

assumptions (1)–(3) from RMEV, the probability of the annual

maximum of the process to be lower than or equal to z is:

Prob
max

1� i�N
Zi � z

� �
¼ ProbðN ¼ 0Þ

þ
X1
n¼1

ProbðN ¼ nÞFZðzÞn

¼ e�k
X1
n¼1

e�kkn

n!
FZðzÞn

" #
¼ e�kð1�FZ ðzÞÞ:

ð2Þ

Note that expression (2) allows calculating the annual

maxima probability distribution function as a function of:

(1) the Poisson parameter associated with the annual

occurrence of storm peaks, and (2) the storm peak mag-

nitude distribution FZðzÞ. Considering the asymptotic

relationship between return period (T) and annual maxima

given by Beran and Nozdryn-Plotnicki (1977):

T ¼ � 1

log Prob
max

1� i�N
Zi � z

� �� � ;
ð3Þ
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which improves estimates associated with returns periods

lower than 10 years, and using (2), the following rela-

tionship is derived:

T ¼ 1

kð1� FZðzTÞÞ
: ð4Þ

Equation (4) allows using the RMEV model for annual

return period estimation. Conversely, quantile zT associated

with given return period T is obtained by solving the fol-

lowing implicit equation:

FZðzTÞ ¼ 1� 1

kT
; ð5Þ

which can be transformed into the problem of finding the

root of the function gðzTÞ ¼ 1� 1
kT
� FZðzTÞ. Analogously

to the MEV approach, numerical tests indicate that the

algorithm proposed by Forsythe et al. (1976), which uses a

combination of bisection, secant, and inverse quadratic

interpolation methods, is robust and efficient.

Note that MEV and RMEV methods are very similar in

structure and share several characteristics:

1. The conditional regression model is the same, the only

difference is the data used to perform the parameter

estimation process.

2. Confidence intervals are obtained using the same

methodology.

3. The same diagnostic tests and plots might be used to

check the adequacy of fitted models and the hypotheses

of independence, such as, Probability-probability (PP)

and Quantile-quantile (QQ) plots, one-sample Kol-

mogorov–Smirnov test (Massey 1951), or Ljung–Box

lack-of-fit hypothesis test (Brockwell and Davis 1991).

An important issue associated with the Poisson parameter

is its estimation. Note that threshold selection is performed

using reanalysis data and any of the methods proposed in

the literature for this task, such as the mean residual life

plot. However, instrumental data might be even below that

threshold due to the discrepancies among both type of data.

This fact might result in differences among Poisson

parameter estimates using instrumental and reanalysis data,

respectively, which could affect the return level estimates

in (4). Our advice is to use the estimate given by instru-

mental data because this data is more reliable, however, we

also recommend to use the estimate given by reanalysis

data for comparative purposes, especially if the instru-

mental record length is below 5 years.

3 Realistic illustrative example

In order to show the functioning of the proposed method-

ology in a realistic case study, we have selected an specific

location close to Bilbao Harbor (Northern coast of Spain).

At this site, we have at our disposal (1) hourly reanalysis

significant wave height records from February 1, 1948 up

to January 1, 2011, and (2) buoy instrumental records from

February 21, 1985 to July 13, 2009. This example is also

used in Mı́nguez et al. (2013b). Reanalysis data is taken

from Downscaled Ocean Waves (DOW) database, which

constitutes a numerical wave database propagated to the

Spanish coastal areas by the Environmental Hydraulics

Institute ‘‘IH Cantabria’’ (Spain). The DOW database is a

hybrid downscaling (Camus et al. 2011) from the GOW

hindcast database (Global Ocean Waves, Reguero et al.

2012).

Let consider the vectors x and xPOT to be, respectively,

reanalysis significant wave heights and the corresponding

storm peak exceedances over the threshold u = 4.4915,

while y is the vector of differences between instrumental and

reanalysis data for the same storms. Note that in order to

ensure independence among storm peaks, we consider a

minimum time span between consecutive storms of 3 days.

In addition, in order to compare reanalysis and instrumental

records during storms we also consider the possibility that

both peaks (instrumental and reanalysis) occur within a time

lag of one day. Threshold choice was informed using the

mean residual life plot (Coles 2001) and it corresponds to the

percentile 99.4 % of the reanalysis data.

We analyze in detail the Bilbao record using the fol-

lowing steps:

Step 1 Using the sample set (xPOT), we fit the Pareto

distribution using the maximum likelihood method, i.e. by

maximizing the log-likelihood function. The following

parameter estimates and 95 % confidence bounds are

obtained:

ŵx ¼ 0:6407 ð0:5561; 0:7464Þ
n̂x ¼ 0:

ð6Þ

This fit corresponds to the exponential case (n̂x ¼ 0). By

applying the one-sample Kolmogorov–Smirnov test with

0.05 significance level for the transformed sample

xN ¼ U�1½F̂X ðxPOTÞ�, the p value obtained is 0.4542, so

that the null hypothesis that the transformed sample fol-

lows a standard normal distribution is accepted. This

implies that the exponential fit is appropriate. In addition,

the Ljung–Box lack-of-fit hypothesis test considering the

null hypothesis that no serial correlation at the lags 1, 2,

and 3 storms exist has been applied on the xN sample. The

p values obtained for a 5 % significance level are (0.6081,

0.5098. 0.2154), respectively. Note that since in all cases

the p values are higher than the significance level 0.05, the

null hypothesis is accepted, which confirms the indepen-

dence assumption between storm peaks.

Step 2 Using the samples (xPOT, y) and an homosce-

dastic linear regression model for the conditional mean of
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the form y ¼ b1 þ b2xPOT with constant standard deviation

b3, we estimate its parameters by maximizing the log-

likelihood function, getting the following parameter esti-

mates and 95 % confidence bounds:

b̂1 ¼ �0:9406 ð�2:3922; 0:5110Þ
b̂2 ¼ 0:2050 ð�0:0756; 0:4857Þ
b̂3 ¼ 0:6512 ð0:5331; 0:7692Þ:

ð7Þ

Figure 1 shows different diagnostic plots for the fitted

regression model. Upper left panel presents the scatter plot

(triangle dots), the conditional mean response (black line),

95 % confidence bands for the mean response (dashed

black line), and 95 % confidence bands for the predicted

values (dashed gray line). To check the normality

assumption for studentized residuals, upper right panel

shows the studentized residuals on a normal probability

plot. Note that data points are aligned with the normal fit,

i.e they follow a standard normal distribution. To further

reinforce this statement, we perform the one-sample Kol-

mogorov–Smirnov test with 0.05 significance level for the

studentized residuals, obtaining a p value equal to 0.8452,

i.e. the sample comes from a standard normal distribution.

Finally, panels below of Fig. 1 show, respectively, the

autocorrelation and partial autocorrelation functions of the

studentized residuals. Note that in both cases the autocor-

relation and partial autocorrelation functions for different

time lags are within the confidence bands, confirming that
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Fig. 1 Diagnostic plots for the regression fit related to Bilbao site

(xPOT, y): i data pairs, mean values, upper and lower bounds for both

expected values and predicted response, ii normal probability plot of

studentized residuals, iii autocorrelation function of studentized

residuals and iv partial autocorrelation function of studentized

residuals
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the values are uncorrelated. This is reinforced by per-

forming the Ljung–Box lack-of-fit hypothesis test at the

lags 1, 2, and 3 storms.

The p values obtained for a 5 % significance level are

(0.8771, 0.1171, 0.0614), respectively, and the indepen-

dence hypothesis between data is accepted.

Note that the lineal term b4 associated with the standard

deviation from the heteroscedastic model has been

removed because it was no statistically significant, how-

ever we did not remove parameter b2 while also being no

statistically significant at the 95 % confidence level. The

reason is that is is statistically significant at the 85 %

confidence level and the rest of diagnostic tests and plots

diagnosed a good fit.

Step 3 Finally, for comparison purposes we fit the

sample zPOT, which corresponds to the peaks over threshold

but using the instrumental data. The following parameter

estimates and 95 % confidence bounds are obtained:

ŵz ¼ 0:8074 ð0:6662; 0:9992Þ
n̂z ¼ 0:

ð8Þ

The fit also corresponds to the exponential case (n̂z ¼ 0).

The fit is considered appropriate because the one-sample

Kolmogorov–Smirnov test with 0.05 significance level, for

the transformed sample zN ¼ U�1½F̂ZðzPOTÞ�, allows

accepting the null hypothesis. The associated p value is

0.4001. Analogously, the Ljung–Box lack-of-fit hypothesis

test considering the null hypothesis that no serial correla-

tion at the lags 1, 2, and 3 storms exist. The p values

obtained for a 5 % significance level are (0.0898, 0.19,

0.3323), respectively, confirming the independence

assumption between instrumental storm peaks.

Step 4 An important issue within RMEV framework is

the estimation of the number of storms per year, i.e. the

Poisson parameter. It would be tempting to use the esti-

mation from reanalysis storm peaks (xPOT), which corre-

sponds to k̂ ¼ 2:8292, however, the method allows

obtaining instrumental storm peaks lower than the thresh-

old used for reanalysis data, and for this reason it is pref-

erable to use the Poisson estimation from the instrumental

data, which is more realistic. In this particular case,

k̂ ¼ 3:8543.

Step 5 Using the information given by the three model

fitted on previous steps, we calculate the return period

values using: (1) reanalysis storm peaks, (2) instrumental

storm peaks, and (3) reanalysis and instrumental storm

peaks through the method proposed in this paper.

Results are summarized in Fig. 2, where the annual

return periods from the models and the data are shown

using the graphical representation given by Mı́nguez et al

(2013a). Note that we also include results from Mı́nguez

et al. (2013b) (MEV annual fit in white line and 95 %

confidence bands in medium gray shadow). From this fig-

ure, the following comments are pertinent:

1. The reanalysis Pareto fit (xPOT, medium gray line)

presents good agreement with respect to data, and the

confidence bands (light gray shadow) are the narrowest

among all models. This result is obvious since the

number of data values used for the fitting is the highest.

2. Making extreme value analysis using reanalysis data

leads to under predictions of return period values of

about a meter, which is not acceptable from the

engineering design perspective.

3. The instrumental Pareto (zPOT, light gray line) under-

estimates wave heights associated with low return

periods, while the RMEV model (black line) presents

better agreement with respect to empirical data for

those cases. These differences tend to decrease for

wave heights related to higher return periods.

4. RMEV model provides higher significant wave heights

for small return periods (B10 years) than MEV model

based on annual maxima. However, they are very close

to each other above 20 years return period. This result

confirms that the proposed method performs better for

a higher range of return periods.

5. Confidence bands for the proposed model RMEV (dark

gray shadow) are always narrower than those for MEV

(medium gray shadow), and are included between

them. This proves that the proposed method decreases

the uncertainty on return period predictions.
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Fig. 2 Annual return period values from: i) reanalysis data (dark gray

circle dots), ii) reanalysis fitted Pareto model (medium gray line), iii)

instrumental annual maxima (black dots), iv) instrumental storm

peaks data (light gray circle dots), v) instrumental fitted Pareto model

(medium gray lines), vi) RMEV fitted model (black line), and MEV

fitted model (white line) from Mı́nguez et al. (2013b). For all models

95 % confidence bands are also plotted in shadows and a dashed line

for zPOT Pareto fit
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4 Conclusions

The RMEV model has proved to be more effective than

MEV, since it includes more information on the tail of the

distribution. The method only requires an slightly modifi-

cation of the approach presented by Mı́nguez et al. (2013b)

and the consideration of storms to follow an Poisson pro-

cess during anyone year.

The major innovation of this contribution is that it

allows to extend the MEV correction method for extreme

wave heights to be used with storm peaks instead of annual

maxima. The practical implications are clear because we

can use more information about the tail distribution of

wave heights, leading to more robust estimates of return

periods. This fact is extremely usefull specially if short

records (lower or equal to 10 years) of instrumental

observations are available. Making an analogy with tradi-

tional Extreme Value Theory methods, this is equivalent to

move from using the Generalized Extreme Value (GEV)

distribution for annual maxima to the Peaks-Over-Thresh-

old method, which is known among practitioners to be

more convenient for extreme value analysis.

Although we have used the maximum likelihood method

for estimation purposes, the Bayesian context is also perfectly

applicable. The latter would modify and possibly improve

results with respect to the estimation process but the method

from the probability theory perspective remains unaltered.

Another interesting issue is the extension of the univariate

method presented in this paper for multivariate settings

(multivariate data and/or multiple locations), which we

believe it can be applied also on a Bayesin context (Vanem

et al. 2012a, b). However, the specific application of this new

method in these contexts is a subject for further research.
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