

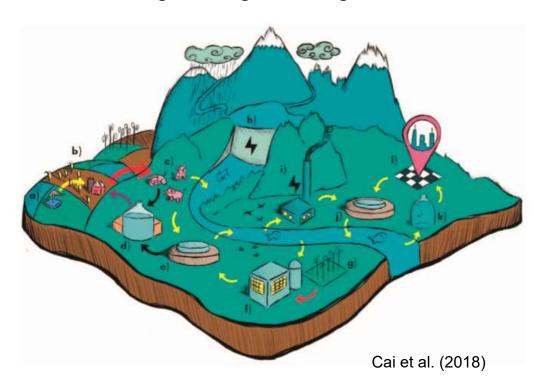
"El Nexo de Agua, Energía y Alimentación en el marco de las políticas públicas de la región ALC y la Agenda 2030"

Foro Virtual #3: Manejo Integrado de Cuencas Bajo una Perspectiva NEXO.

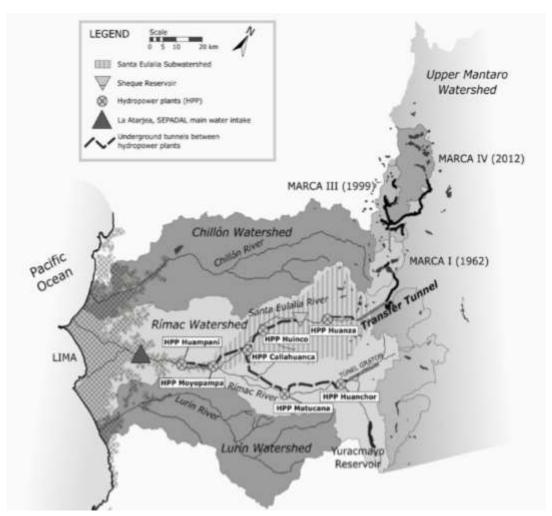
¿Cómo se puede mejorar la sustentabilidad y la efectividad en el manejo integrado de cuencas bajo una perspectiva Nexo?

Santa Eulalia: Iniciativas bajo una mirada Nexo

Reinaldo Peñailillo
Asesor senior Gestion Recursos Hídricos, Deltares


GIRH y Nexo

Integración

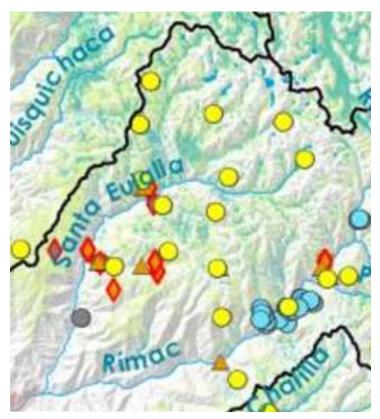

Participación /
Cooperación

Objetivos

Sistema Integrado Agua-Energía-Alimentación.

Subcuenca Santa Eulalia (Peru)

Hommes, 2017


- Rol importante para Lima
 - 50% consumo de agua
 - 447 MW energía (5 hidroeléctricas) – 70% de energía de Lima
- Agricultura y Ganadería a pequeña escala
 - Baja competitividad
 - Autoconsumo
 - Mercado regional o Limeño
 - Riego tecnificado (5%)
- 20% en extrema pobreza
 - Migración

Seguridad para Lima vs Seguridad Local

Seguridad para Lima	Generación hidroeléctrica	Embalses: Reg. Y Alm.	Emisiones	
Inseguridad Santa Eulalia	Agua potable segura	Agua para riego	Acceso a Energía / Uso leña	
Malas prácticas	Agrícolas	Ganaderas	Impactos acuicultura	Caudal ecológico
Vulnerabilidad al Cambio Climático	Cultivos & Pastizales	Retroceso glaciares	Régimen hidrológico	Generación hidroeléctrica
Insuficientes Ingresos	Extrema pobreza	Migración a Lima		

Prácticas bajo perspectiva Nexo

Institución

SEDAPAL

Autoridad Nacional del Agua

M AQUAFONDO

M PACYD

M TNC

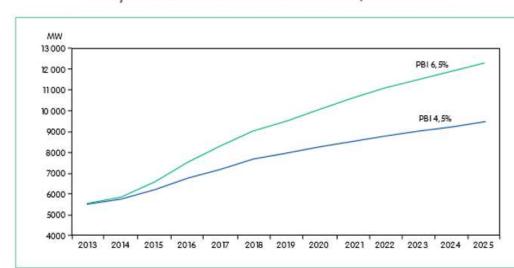
Estado

△ Potencial

Propuesta

☐ En ejecución

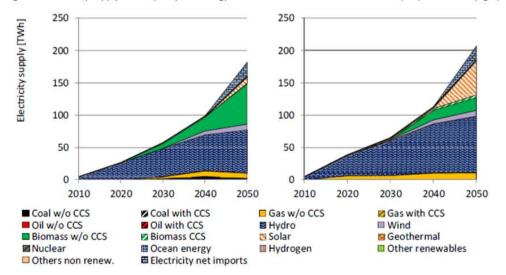
Ejecutado



Desafíos pendientes y perspectivas a futuro

- Gobernanza
- Cuantificación de recursos, Indicadores Nexo en la GIRH
- Planificación hídrica y energética
- Buenas prácticas agrícolas

Proyección de la máxima demanda, 2014-2025



"La vinculación entre el agua y la energía es evidente y es necesario que estos recursos sean regulados y administrados en conjunto y no separadamente" Máximo Hatta Sakoda (2016)

Fuente: Ministerio de Energía y Minas (2014).

Implicaciones del desarrollos energéticos para la disponibilidad de agua

Figure 14 Electricity supply in Ethiopia by technology and resource in two scenarios: baseline (left) and RCP2.6 (right).

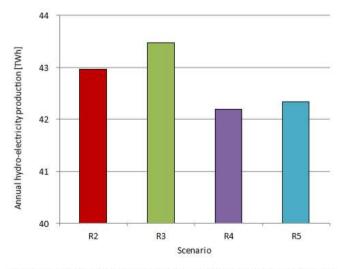
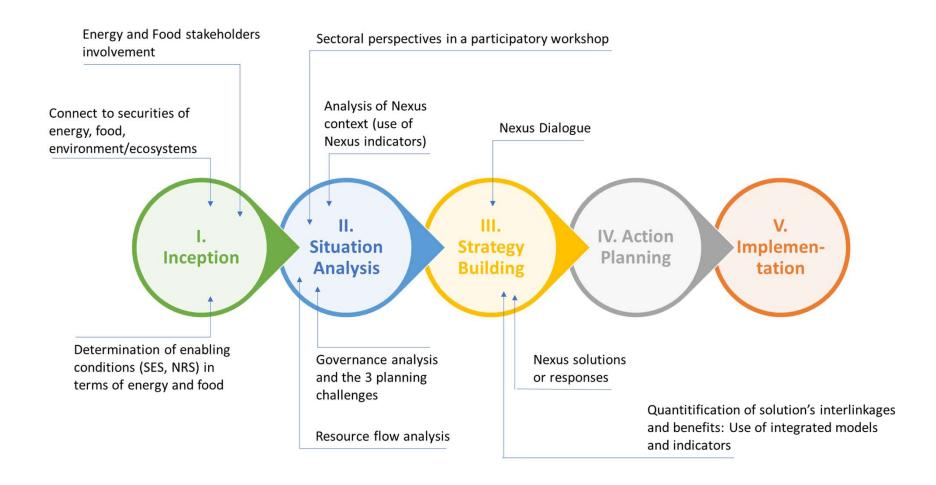



Fig. 7. Annual average hydropower supply from surface water reservoirs in Ethiopia's Blue Nile river basin under scenarios R2, R3, R4 and R5.

Table 7 Main results from the RIBASIM and TIAM-ECN models for annual average hydropower generation in 2050						
Climate change (CC) in 2050	Scenario (RIBASIM/TIAM-ECN)	RIBASIM	RIBASIM (corrected)	TIAM-ECN		
Negligible CC	R3/-	46,030 GWh	73,190 GWh			
Moderate CC	R5/RCP2.6	44,850 GWh	71,310 GWh	86,820 GW		
Enhanced CC	-/Baseline	_		66,700 GW		

Conclusiones y recomendaciones incorporando el enfoque NEXO

