

PIANC

To remain the leading international source of waterborne transport-related information in the 21st century

Our Mission

To provide expert guidance and technical advice

Bringing together the best international experts, both public and private, on technical, economic and environmental issues pertaining to waterborne transport infrastructure

High-quality *Technical Reports*International *Commissions and Working Groups*

To keep the international waterborne transport community connected

Four-yearly PIANC World Congresses

Four-yearly PIANC-COPEDEC International Conferences on Coastal and Port Engineering in Developing Countries

Two-yearly Smart Rivers Conferences bringing experts together on inland waterway infrastructure.

To support Young Professionals and Countries in Transition

	?)		
	Average	σ	σ / Ave
Support inland waterways policies and projects in Infrastructure development: planning, monitoring and identifying missing links and bottlenecks that should be prioritized	78	25	32%
Increasing safety and ease of navigation by ensuring the orderly and efficient control and maintenance of waterways	71	30	42%
Planning of regional integration projects	71	23	32%
Achieving a more sustainable use of inland waterways (and transport in general	63	29	46%
Basis for investment decisions and cost estimates by Governments and shippin and transport industry	g 59	22	37%
Use of new technologies (RIS, AIS,)	56	32	56%
Vessels design / Naval improvements	54	28	53%
Make information available as a guarantee for users that minimum dimensions will be respected	52	29	55%
Identifying IWT competitiveness by laying down maximum vessel sizes, affecting navigation and transport costs.	g 45	26	57%
Common language for different stakeholders	41	33	81%
Facilitated access to financing of infrastructure projects	40	26	65%

Results 3) What are the parameters that should be considered in inland waterway classification?

	Average	Σ	σ / Aver
Waterway depth (min and average, per month)	89	21	24%
Navigability (level of difficulty)	75	25	34%
Vessel type (barge, convoy, seagoing), the tonnage and the vessel's dimensions (draft, beam, length)	72	27	37%
Guaranteed a secured navigability all the year (% of time: 50%, 75%, 90%, 99%)	72	29	40%
Navigation obstacles/constraints (shallow passage, etc.)	66	25	37%
Guaranteed day and night navigation (with suitable traffic aids): 24h/day	62	30	48%
Availability (or not) of waterways signs and markings, aids to navigation facilities, and River information services (RIS)	60	27	45%
Availability of Ports and Terminal facilities with a multimodal platform	56	25	44%
Tides / Water level information services	55	29	53%
Existence flow control infrastructure as navigation weir and navigation locks, which limits ship sizes.	54	27	50%
Air clearance (bridge)	53	26	50%
Traffic Volume (tons or passengers) & Number of Vessels/day	51	33	65%
Facilities for environment-friendly navigation	46	31	68%
Local wind, current & wave characteristics	45	28	63%
Availability of Vessel support / assistance services	41	28	70%

100: max rate (first position in preferences)

10: min rate (last position in preferences)

IW Classification Parameters

- 1. Waterway depth (min and average, per month)
- 2. Navigability (level of difficulty)
- 3. Guaranteed a secured navigability all the year (% of time: 50%, 75%, 90%, 99%)
- 4. Vessel type (barge, convoy, seagoing), the tonnage and the vessel's dimensions (draft, beam, length)
- 5. Navigation obstacles/constraints (shallow passage, etc.)
- Availability (or not) of waterways signs and markings, aids to navigation facilities, and River information services (RIS)
- 7. Guaranteed day and night navigation (with suitable traffic aids): 24h/day
- 8. Tides / Water level information services
- 9. Air clearance (bridge)
- 10. Availability of Ports and Terminal facilities with a multimodal platform
- 11. Existence of flow control infrastructure as navigation weir and navigation locks, which limits ship sizes.
- 12. Local wind, current & wave characteristics
- 13. Facilities for environment-friendly navigation
- 14. Traffic Volume (tons or passengers) & Number of Vessels/day
- 15. Availability of Vessel support / assistance services

Provide a tool for assessing the status of the existing waterways and their current and potential capacity, and to integrate into the national and regional logistics chains

- Support inland waterways policies and projects in infrastructure development: planning, monitoring and identifying missing links and bottlenecks that should be prioritized
- 2. Planning of regional integration projects,
- Increasing safety and ease of navigation by ensuring the orderly and efficient control and maintenance of waterways
- Basis for investment decisions and cost estimates by Governments and the shipping and transport industry

South America IW Classification Potential Benefits

From the public policy perspective

- Providing an IW <u>inventory</u> which facilitates intermodal integration
- Providing a basis for estimating the <u>investment</u> gap, maintenance needs and <u>impact of new investments</u>,

From the private sector/user perspective

- o Accessing information on the navigation conditions
- o Providing ease of navigation & security of navigation

Status of the WG201 Report (April 2019)

Proposal of Methodology (2018)

Not yet Values / Numbers

To be approved by S.A countries (!!)

Need additional data (Benchmark)

Based on data (Benchmark), classifications will be proposed, valid for all S.A Countries, to prioritize investment, maintenance, ...

WG201 Report: RANKING OF PARAMETERS for Class Ranking of the parameters for IW classification in South America 1. Waterway depth (min and average, per month) 2. Navigability (level of difficulty) 3. Guaranteed a secured navigability all the year (% of time: 50 %, 75 %, 90 %, 99 %) 4. Vessel type (barge, convoy, seagoing), the tonnage and the vessel's dimensions (draft, beam, length) 5. Navigation obstacles/constraints (shallow passage, etc.) 6. Availability (or not) of aids to navigation and RIS 7. Guaranteed day and night navigation (with suitable traffic aids): 24h/day 8. Tides/Water level information services 9. Air clearance (bridge) 10. Availability of Ports and Terminal facilities with a multimodal platform

Class	Maximum Width (B), m	Length (L), m
I	48	280
II	33	210
III	25	210
IV	23	210
V	16	210
VI	16	120
VII	12	140
VIII	12	80
IX	12	50

Source: Administrative Bulletin No 172, Portaria No 1.635.

Table 4-2: Classes in the Brazilian system of design vessels

IW Class in BRAZIL

Category	Minimum Operational Depth (P), m
Special	P > 3.50
Α	3.50
В	3.00
С	2.50
D	2.00
E	1.50
F	1.00

Source: Administrative Bulletin No 172, Portaria No 1.635.

Table 4-3: Sub-classes (categories) in the Brazilian system based on waterway depth

PIANC-ECLAC Proposal (draft 2018) 1st TIER: Classes of Inland Waterways - Subclasse "b" Minimum width in Minimum width of the Air clearance (height Sub-class navigation Channel case of locks under the bridge) b6 100 m 40m 15m b5 80 35 12 b4 60 25 9 b3 50 16 7 40 b2 12 5 30 b1 3 Table 5-3: Subclasses Tier One: Variant b: minimum waterway dimensions If further information is available, the exact number of days with impacted services can be indicated as follows: - Less than 10 days of impacted service - Less than 20 days of impacted service - Less than 30 days of impacted service

PIANC-ECLAC Proposal (draft 2018) 3rd TIER: Regulatory and Management Regime)
Regulator and managem	* Regional integration	Environmental aspects	Social dimension	Economic and financial dimension	Institutional dimension
regime	Use of regional or international standards as part of the regulatory regime or river basinapproach	Existence of rules and practices to deal with the environmental implications of the waterway development.	Existence of rules and practices to deal with the social implications of the waterway development.	Existence of investment plans and financing schemes for the development of the waterway	Existence of dedicated institutions in charge of the waterway's development and effective division of responsibilities and coordination mechanisms.
A	If all five				
В	If four out of five	:			
C	If three out of fiv	re e			
D	If two out of five				
Ε	If one out of five				
X	Information not	available			
	Та	able 5-5: Regulatory	and management	regime	

Design Barge Convoy in Tapajós EVTEA (Tapajós River) EMPURRADOR Comprimento 25 00 m Congrimento 60 00 m Boca 10.67 m Calado 3.00 m 10.67 m 10

Bathymetry data

Navigation Charts

From Santarém to São Luiz do Tapajós

Data collected in 1982, and again in Dec 2013 – January 2014

- Depths below a low water datum (90% low monthly mean)

• White: Deeper than 10 meters

• Light Blue: 5-10 meters

• Dark Blue: Less than 5 meters

29

Tail.	of the Rio Tapajos (B	razii) by A boliillo	
Tier One: Phy	Parameters Needed for Classification (based on WG 201 proposal - 2018)	Parameters provided for Rio Tapajos (between Mirititube and Santarem)	Class
Class I - VI	Minimum water depth (m); if needed to calculate as% exceedance value of monthly or annually average	3 m	Class V
(Sub) Class a1 - a9 or	Maximum vessel width and length (m)	32 x 205 m	(Sub)cla a7-a8
(Sub) Class a1 - a9	Minimum channel width, Minimum width of locks, Minimum air clearance (m)	N/A	
Tier Two: Ca	tegories of Inland Waterways		
Category A - F (X)	navigational period; navigational aids (services)	43 signal bouys / 11 mooring bouys	Category

WG 201 BENCHMARK

We propose a benchmark (a series of case studies):

- 1) Select some S.A. rivers to assess the feasibility to implement the WG201 classification (1st tier);
- 2) <u>Collect data</u> concerning these case studies (data are mandatory to know the reality!):
- The <u>statistic about the water depth</u> (draft) to assess the <u>reliability</u> of the river. It is important to have the statistic of low water depth (Number of days having a given low depth per month).
- <u>Dimensions of the typical "Barge configurations"</u>, which are composed of several units (fleet);

WHAT is the "MINIMUM SET of DATA"?

MANDATORY DATA:

Set 1: Data about water depth.

OPTIONAL DATA (optional but strongly expected):

Set 2: Data about the waterway dimensions;

Set 3: Data about the vessels (barge configurations)

and eventually

Set 4: Data about the traffic (transported tonnage / passengers)

!! We need past and current data (statistics), but also the trends (forecast) !!!
Not to class a river, but latter to use it for Planning

WHAT is the "MINIMUM SET of DATA"?

MANDATORY DATA:

Set 1: Data about water depth.

Different types of water depth data may be acceptable :

Min water depth with XX% of reliability based on at least 3 years measurements.

Daily average water depth during at least 3 years

or

or

or

Monthly minimum water depth, during at least 3 years

Number of days (per month) when the water depth is smaller to a given threshold, during at least 3 years

Number of days (per month) when the navigation is not possible, during at least 3 years.

To be discussed: 3 years versus 5 years or (as minimal duration of the statistics)

WHAT is the "MINIMUM SET of DATA"?

OPTIONAL DATA (optional but strongly expected):

Set 2: Data about the <u>waterway dimensions</u>; which can be:

- the length (or number) of shallow water areas (if any);
- the navigability feasibility during high flow;
- the min. river width (B) which is always available;
- the min lock width (B) which is always available;
- the min air clearance, which is always available.
- Morphological type of the river: single bed, braided bed or meandering bed; in the latter case: sinuosity and radius of the more severe bend (can be easily measured with Google Earth)
- Main natural barriers and physical impediments

WHAT is the "MINIMUM SET of DATA"?

OPTIONAL DATA (optional but strongly expected):

Set 3: Data about the vessels (barge configurations):

 On the maximum convoy dimensions (Lpp, Beam), about the "barge configurations" which are currently navigating, and maybe on future trend (tomorrow)

Set 4: Data about the <u>traffic</u> (transported tonnage / passengers) for the current situation and, if possible, for the future:

- Tonnage transported (monthly if possible or yearly during at least last 3 years)
 and maybe on future trend (tomorrow)
- The names of the main ports on the concerned river stretch

BENCHMARK

Potential Case Studies:

- Brasil Tapajós River in Brazil (Calvin and Brian)
- Colombia Magdalena River (Jorge Saenz)
- Colombia Atrato, Meta, Putumayo and Guaviare Rivers (F Zapata)
- Argentina Parana superior (L Temer, Sebastian Garcia and R. Escalante)
- Paraguay-Parana (Moises Ayala)
- Others?

From the Saenz documents on the MAGDALENA RIVER (COLOMBIA):

- FLEET & BARGE CONFIGURATION
 - → Statistics on the Dimensions of the typical "Barge configurations", which are composed by several units (fleet);
- TRAFFIC DATA AND DEMAND FORECAST
 - → Statistics on the Tonnage transported per year;
- WATER LEVEL STATISTICS
 - → Statistics on the water levels to assess the reliability of the river using several gauge stations

EXAMPLE 2 of CLASSIFICATION (Columbia) of the Magdalena river (by Jorge Enrique Saenz) FLEET INVENTORY SHIPPING COMPANIES AND TRANSPORT CAPACITY (Nov/2014) OF PUSH TOWS Total Ton. Ton. Ton. IMPALA 54 103,518 102,500 206,018 16 41 95 NAVIERA FLUVIAL COLOMBIANA 16 91 90,361 0 90,361 NAVIERA RIO GRANDE -FLOTA FLUVIAL CARBONERA 16.089 7 6 5.302 14 21.391 NAVIERA CENTRAL S.A. 3 4 TRANSFLUCOL LTDA. 5 19 13.829 0 13.829 FLOTA NAVIERA BIG RIVER 8,800 TRANSNAVAL S.A.S. 5 7 4,673 3,650 8,323 TRANSPORTE BERNARDO MONSALVE LTDA. 6,206 6,206 10 TRANSFLUCAR LTDA. 2 5,139 0 5,139 CASTROMAR NAVEGACIONES S.A. 11 3 10 4,938 0 0 4.938 PARTICULARES 5 1 550 7 2,596 8 3,146 TRANSPORTES FLUVIALES 2 13 1.200 707 1.907 ARIARI LTDA TOTALES 250,516 134,992

EXAMPLE 2 of CLASSIFICATION (Columbia) of the Magdalena river (by Jorge Enrique Saenz)

FUTURE NAVIGATION CHANNEL WIDTH

SALGAR - BERRIO REACH = 300 m
 BERRÍO - BARRANCABERMEJA REACH = 500 m
 NAVIGABLE CHANNEL WIDTH (two way) = 150 m

• MINIMUM RADIUS OF CURVATURE = 900 m

• REFERENCE LEVEL EXCEDED (% of time):

SALGAR - BERRIO REACH = 90%BERRÍO - BARRANCABERMEJA REACH = 95%

• SUMMER CHANNEL DEPTH = 7 feet (2.10 m)

• VESSEL DESIGN DRAFT = 6 feet (1.80 m)

ECLAC

Actions & Next Steps

- Benchmark, collect data, ...
- Final proposal (2020)
- Lobby to S.A Countries (politics, deciders, ...)
- IMPLEMENTATION in S.A.

WG 201 – Development for Inland Waterway Classification for South America.

Rosario, Argentina, 30th April 2019

Thanks

WG 201 – Development for Inland Waterway Classification for South America.

Rosario, Argentina, 30th April 2019