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Introduction

Introduction

▶ Regional efficiency are commonly associated with factor dotation and local technology

▶ Spatial frontier analysis explore the potential spillover of the inefficiency

▶ In the spatial analysis of production efficiency, spatial autocorrelation can be controlled
through the SAR (spatial autoregressive) specification. Heterogeneity, in turn, depends
on the hypotheses attributed to the stochastic frontier errors.

▶ Our proposal consists of integrating the SAR component into the structure of a
stochastic frontier model with random effects.
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Introduction

Stochastic Frontier

Figure: Stochastic frontier model (Coelli et al., 2005; Lakner et al., 2012)
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Stochastic Frontier Specifications

Panel data stochastic frontier models

First generation of panel data stochastic frontier models (Pitt and Lee, 1981; Kumbhakar,
1987a,b; Battese and Coelli, 1988)

yit = α + f (xit ;β )+ vit −uit (1)

where

▶ deterministic factors: α , β ’s, xit and the technology ( f (·))

▶ random factors: vit and uit
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Stochastic Frontier Specifications

Panel data stochastic frontier models

▶ Different specifications to uit and vit result in different models:

▶ Battese and Coelli (1992):

yit = α + f (xit ;β )+ vit −uit , (2)

uit = exp [(−η(t −T ))]ui, ui
i.i.d.
∼ N+(µ,σ2

u ),

vit
i.i.d.
∼ N(0,σ2

v ).

▶ Battese and Coelli (1995):

uit = zitδ +ωit , uit
i.i.d.
∼ N+(zitδ ,σ

2
u ) (3)

where ωit g−zitδ .
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Stochastic Frontier Specifications

Panel data stochastic frontier models

▶ Kumbhakar and Lovell (2003):

yit = α + f (xit ;β )+ vit −uit (4)

uit ∼ N+(µ,σ2
u ) = N+(µ,exp(zu,itδ ))

vit ∼ N(0,σ2
v ) = N(0,exp(zv,itφ)).

▶ Greene (2005a,b) proposed two models, which he called ‘true’ fixed-effects frontier
model and ‘true’ random effects frontier model.

yit = αi + f (xit ;β )+ vit −uit (5)

uit ∼ N+(µ,σ2
u ) = N+(µ,exp(zu,itδ ))

vit ∼ N(0,σ2
v ) = N(0,exp(zv,itφ))

αi = N(0,σ2
α).
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Stochastic Frontier Specifications

Spatial autoregressive stochastic frontier models for panel data

▶ Glass et al. (2016):

yit = ρ ∑
j ̸=i

wi jy jt +x¦it β + vit −uit (6)

uit ∼ N+(0,σ2
u )

vit ∼ N(0,σ2
v ).

▶ Lai and Tran (2022):

yit = ρ ∑
j ̸=i

wi jy jt +x¦it β +(αi −ηi)+(vit −uit) (7)

where, ξ1,i. = (αi −ηi)ιT represents the time-invariant and ξ2,i. = (vit −uit)
time-variant random components.
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Stochastic Frontier Specifications

Spatial autoregressive stochastic frontier models for panel data

▶ Ramajo and Hewings (2018):

yit = ρ ∑
j ̸=i

wi jy jt + f (xit ;β )+ vit −uit , (8)

uit = exp [(−η(t −T ))]ui, ui
i.i.d.
∼ N+(µ,σ2

u ),

vit
i.i.d.
∼ N(0,σ2

v ).
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Methodology

Spatial stochastic frontier model with random effects (SSF-RE)

Our proposal: Spatial Stochastic Frontier with Random Effects (SSF-RE).

yit = αi +ρ ∑
j ̸=i

wi jy jt +x¦it β + vit −uit (9)

Let yi. be the column vector formed by stacking yi1, ...,yiT , xi., vi., ui. and αi. = αiιT are
defined similarly, where ιT is a vector of ones. Then (9) in matrix form can be written as
follows:

yi. = ρ ∑
j ̸=i

wi jy j.+xi.β +αi.+ξi. (10)

In this specification, ξi. = vi.−ui. is the time-variant error term.
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Methodology

Assumptions of the random effects

We assume that specific random effects and time-varying error term are subject to the
following assumptions:

A1: Unobserved individual specific effects remain normally distributed with zero mean and
heteroscedastic variance, such that: αi ∼ N(0,σ2

α(zi)), where σ2
α(zi) = exp(δ¦zi) for

zi ∈ R
n and zi are exogenous variables.

A2: The two time-varying random components have the following distribution:
vi. ∼ N(0T ,σ

2
v IT ) and ui. ∼ N+(0T ,Σi), where Σi = diag(σ2

u (zi1), ...,σ
2
u (ziT )) such

that σ2
u (zit) = exp(φ¦zit) for zit ∈ R

n. Here, 0T is a (T ×1) vector of zeros and IT is a
(T ×T ) identity matrix.

A3: The three random components αi, vit and uit are independent to each other and
uncorrelated with xit .
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Methodology

Closed-skew normal distribuition

Let φT (·; µ,Ξ) and ΦT (·; µ,Ξ) be the marginal and cumulative normal probability density
functions, Lai and Kumbhakar (2018) and Lai and Tran (2022) demonstrate that the
time-variant component follows the closed skew normal distribution, according to the
following parameters

ξi. ∼CSNT,T

(

0T ,Θi,−ΣiΘ
−1
i ,0T ,ϒi

)

, (11)

where Θi = σ2
v IT +Σi and ϒi = ( 1

σ2
v

IT +Σ−1
i )−1.

The joint pdf of time-variant compound error term is given by

fξ (ξi.) = 2T φT (ξi.;0T ,Θi)Φ
(

−ΣiΘ
−1
i ξi.;0T ,ϒi

)

, (12)
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Methodology

Joint PDF and MSL estimator

Under the distribution assumptions of [A1]-[A3], the log-likelihood of the maximum
simulated likelihood estimator can be obtained from the joint probability density function.

fε(εi.) =
∫ +∞

−∞
fε|α(εi.|αi.) fα(αi.)dαi. =

∫ +∞

−∞
fξ (εi.−αi.) fα(αi.)dαi. (13)

where εi. = αi.+ξi. is the error term of the SSF-RE model.

Given that Θi and ϒi are both diagonal matrices, the T-dimensional integration can be
reduced to a one-dimensional integration. Thus, the joint pdf (13) can be further simplified
as

fξ (ξi.) = 2T
T

∏
t=1

[

φ
(

ξi.;0,σ2
v +σ2

uit

)

Φ

(

−σ2
uit

σ2
v +σ2

uit

ξi.;0,
σ2

v σ2
uit

σ2
v +σ2

uit

)]

. (14)
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Methodology

Maximum Simulated Likelihood (MSL) estimator

Using hypothesis [A3], the conditional function in (13) can be replaced by (14), then obtain an
approximate empirical model through simulation

f s
ε (εi.) =

1

M

M

∑
m=1

fξ (εi.−αm
i. ). (15)

The joint function (15) controls the random effects not observed in the SSF model. The function fξ (·)
receives a normally distributed random variable as a Halton draw.
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Methodology

Maximum Simulated Likelihood (MSL) estimator

Using (14)-(15) and defining θ = (ρ,β¦,σv,σu,σα)
¦ as a vector of parameters belonging

to the probability space Θ, it is possible to derive the log-likelihood function for SSF-RE
model

LLs(θ) =
N

∑
i=1

ln f s
ε (εi.) (16)

=
N

∑
i=1

ln

{

1

M

M

∑
m=1

[

2T φ
(

εi.−αm
i. ;0,σ2

v +σ2
uit

)

×
T

∏
j=1

Φ

(

−σ2
uit

σ2
v +σ2

uit

ξi.;0,
σ2

v σ2
uit

σ2
v +σ2

uit

)]}

The optimization of equation (16) results in the simulated maximum likelihood estimator.

θ̂SML = argmax
θ∈Θ

LLs(θ) (17)
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Methodology

Spatial prediction of efficiency and marginal effects

Let y.t = (y1t , ...,yNt)
′ be a (N ×1) vector formed by stacking the cross-sectional units;

x.t ,α,v.t and u.t are defined in a similar way. Thus, (9) for the observations at time t can be
written as follows:

y.t = ρWy.t +x.tβ +α + v.t −u.t (18)

Given that IN −ρW is non-singular, the SSF-RE model can be written to the reduced form

y.t = S(ρ)x.tβ +S(ρ)α +S(ρ)(v.t −u.t), (19)

where S(ρ) = (IN −ρW)−1 is a (N ×N) matrix.

Let βk be the kth element of β and Si j(ρ) ∈ S(ρ). Then, a change in the kth explanatory
variable from firm j at time t causes the following marginal effect (LeSage and Pace, 2009)

∂yit

∂x jt,k
= βkSi j(ρ). (20)
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Methodology

Spatial prediction of efficiency and marginal effects

Glass et al. (2016): by definition, the total impact is the sum of all spatial effects

βTot
k =

N

∑
j=1

∂yit

∂x jt,k
= βk

N

∑
j=1

Si j(ρ). (21)

Lai and Tran (2022) argue that is only valid if the frontier is linear. When is nonlinear in xit ,
these two equations need to be adjusted accordingly.
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Methodology

Spatial prediction of efficiency and marginal effects

Given the MSL estimator of θ , Kutlu (2018) and Lai and Tran (2022) decomposed the
effects into two vectors

uTot
it = Sii(ρ)uit +

N

∑
j ̸=i

Si j(ρ)u jt (22)

where the terms on the right-hand side represent the direct and indirect impacts of the
transient inefficiency.
Using a multiplicative formulation, we propose decompose the total impact of the efficiency
of local firm i as

TETot
it = exp(−Sii(ρ)uit)×

T

∏
j ̸=i

exp(−Si j(ρ)u jt) (23)

= TEDir
it ×TEInd

jt
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Methodology

Spatial prediction of efficiency and marginal effects

There are two ways to compute transient inefficiency.
Filippini and Greene (2016) used the moment generating function to predict technical
efficiency.
Lai and Tran (2022) argue that this method can be very empirically exhaustive due to the
multivariate derivation of the cumulative pdf.
Based on the law of iterated expectation (LIE) of Bayes, they suggest a simpler approach to
estimating inefficiency (efficiency) and marginal effects.

E
s(uit |εi.) =

1

M

M

∑
m=1

{

µ̃m
it + σ̃it

[

φ(−µ̃m
it /σ̃it)

1−Φ(−µ̃m
it /σ̃it)

]}

Ωm
i , (24)

where σ̃2
it =

σ2
v σ2

uit

σ2
v +σ2

uit

, µ̃m
it =

−ξi.σ
2
uit

σ2
v +σ2

uit

and Ωm
i =

fξ (εi.−αm
i. )

1
M ∑

M
m=1 fξ (εi.−αm

i. )
.

Conditional expectation (24) returns a vector of transient inefficiency which is used in the
spatial prediction of the firm’s efficiency. 19 / 32
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Data

Data

▶ We used data of the Brazilian food industry.

▶ It is the industry least geographically concentrated and has expanded rapidly.

▶ Food industry increased its participation in manufacturing employment from 13.4% in
2007 to 18% in 2018

▶ In terms of VA, it was 18.17% in 2007 jumped to 24.4% in 2018.
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Data
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Figure: Regional distribution of food industry in Brazil
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Results
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Results

Density of technical efficiency

Figure: Density of technical efficiency: direct, indirect and total effect.
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Results

Model I – Spatial distribution of technical efficiency

Figure: I - Spatial distribution of technical efficiency: direct, indirect and total effect.

TE_Direct

0.682 to 0.761

0.761 to 0.779

0.779 to 0.788

0.788 to 0.800

0.800 to 0.847

TE_Indirect

0.921 to 0.943

0.943 to 0.948

0.948 to 0.950

0.950 to 0.953

0.953 to 0.965

TE_Total

0.629 to 0.718

0.718 to 0.739

0.739 to 0.749

0.749 to 0.764

0.764 to 0.818

24 / 32



Spatial Spillovers and Productive Efficiency: A Spatial Stochastic Frontier Model for Panel Data

Results

Model II – Spatial distribution of technical efficiency

Figure: II - Spatial distribution of technical efficiency: direct, indirect and total effect.
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