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[1] Recent evidence suggests long-term changes in the intensity and frequency of extreme
wave climate around the globe. These changes may be attributable to global warming as
well as to the natural climate variability. A statistical model to estimate long-term
trends in the frequency and intensity of severe storm waves is presented in this paper. The
model is based on a time-dependent version of the Peak Over Threshold model and is
applied to the Washington NOAA buoy (46005) significant wave height data set. The
model allows consideration of the annual cycle, trends, and relationship to atmosphere-
ocean-related indices. For the particular data set analyzed the inclusion of seasonal
variability substantially improves the correlation between the model and the data. Also,
significant correlations with the Pacific–North America pattern, as well as long-term
trend, are detected. Results show that the model is appropriate for a rigorous analysis of
long-term trends and variability of extreme waves and for providing time-dependent
quantiles and confidence intervals.
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1. Introduction

[2] The topic of ocean and coastal climate change poses
many statistical challenges, such as the study of changes in
the intensity and frequency of severe storms. The analysis
of long-term trends and climate variability allows us to
assess potential changes of coastal risk flooding as well as
to consider variations of extreme value wave climate in the
design of maritime works.
[3] There are numerous examples that suggest a non-

negligible trend in the intensity and frequency of major
storm waves in different seas around the globe. An
increase in the intensity and frequency of major storms
has been detected in the Northeast Atlantic [see e.g.,
Carter and Draper, 1988; Grevemeyer et al., 2000;
Vikebo et al., 2003; Wang and Swail, 2001] as well as
in the Northeast Pacific Oceans [see, e.g., Allan and
Komar, 2000; Graham and Diaz, 2001; Wang and Swail,
2001]. Gulev and Grigorieva [2004] detected trends in
the last century in the magnitude of observed visual wave
heights as well as important correlations between these
wave heights and regional climate indices, such as the
North Atlantic Oscillation (NAO) [Hurrell, 1995] or the

Southern Oscillation Index (SOI) [McPhaden, 2004].
Recently, Bromirski et al. [2005] described the wave
spectral energy variability along the northeast Pacific
NOAA buoys, obtaining significant correlations with the
SOI and the Pacific–North America (PNA) Index [Wallace
and Gutzler, 1981]; the magnitudes of these correlations
depend on the location of each particular buoy.
[4] Several authors have analyzed the nonstationary be-

havior of extreme wave heights by means of extreme value
distributions [e.g., Carter and Challenor, 1981; Morton et
al., 1997], thus modeling the intra-annual variability. How-
ever, the different timescales previously considered by
different authors (seasonal and decadal variability, long-
term or secular trends) have not been analyzed as a whole
using nonstationary extreme value theory. In this paper, we
use a time-dependent version of the Peak Over Threshold
(POT) model [see, e.g., Smith, 2001; Katz et al., 2002;
Davison and Smith, 1990] to examine trends in the intensity
and frequency of extreme wave events.
[5] The paper is organized as follows. First, a brief

description of the generalized extreme value and POT
models (the so-called generalized Pareto distribution
(GPD)–Poisson model) for time-dependent random varia-
bles is shown. Second, a description of the data set is given.
We use the significant wave height (approximately the
average of the highest third of the wave heights in a sea
state) to describe the wave climate variation. Third, the
parameterization employed in terms of covariates and
functions of time is addressed. Next, the model is applied
to a particular data set (Washington buoy 46005) showing
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the utility of the proposed formulation. Finally, some con-
clusions are given.

2. Methodology

2.1. GPD-Poisson Model

[6] The simplest model in extreme value theory is the
Annual Maxima method (AMM) [see Coles, 2001, chap. 3].
In this approach, annual maxima values are assumed to be
independent and identically distributed random variables
(i.e., random variables whose joint probability distribution
is provided by the product of their marginal distributions,
which are identical). A useful model for this common
distribution is provided by the generalized extreme value
(GEV) cumulative distribution function (CDF)

H z; m;y; xð Þ ¼ exp � 1þ x
z� m
y

� �� ��1=x
( )

; ð1Þ

where 1 + x(z � m)/y > 0, m is a location parameter, y > 0 is
a scale parameter and x is a shape parameter which
determines the nature of the tail of the distribution. If x! 0,
the GEV distribution leads to the Gumbel CDF

H z; m;yð Þ ¼ exp � exp � z� m
y

� �� �� �
: ð2Þ

[7] The main weakness of the AMM comes from using
only one data per year, totally disregarding the information
in the remaining data. To mitigate this problem, the POT
method for independent and identically distributed random
variables is used [Davison and Smith, 1990]. The basic idea
is to choose a high-threshold u and to study the statistical
properties of all the exceedances over u; in particular, the
number of exceedances over u for a given period of time,
the distribution of exceedances within a year, and the
amounts by which the threshold is exceeded, i.e., the
threshold excesses. We assume that the number of exceed-
ances of the level u in any given year (also valid for other
time intervals, see section 2.2) follows a Poisson distribu-
tion with annual mean nT, where n is the event rate (yr�1)
and T = 1 year, and that the threshold excesses y > 0 are
modeled using the GPD given by

G y;s; xð Þ ¼ 1� 1þ xy=sð Þ�1=x x 6¼ 0

1� exp �y=sð Þ x ¼ 0

�
; ð3Þ

where s > 0 is a scale parameter and x is the shape
parameter of the GEV distribution. The combination of the
Poisson model for frequency and the GPD model for
intensity can be expressed [Pickands, 1975; Smith, 2001] in
a form compatible with the GEV distribution for annual
maxima provided that

s ¼ yþ x u� mð Þ; n ¼ 1þ x u� mð Þ=yð Þ�1=x: ð4Þ

[8] If N exceedances y1, y2, . . ., yN are observed over a T-
year period, the likelihood function for the GPD-Poisson
model is expressed as

LN ;y n;s; xð Þ ¼ nTð ÞNe�nT

N !

YN
i¼1

g yi;s; xð Þ; ð5Þ

where g is obtained from G by differentiating with respect
to y. After ignoring constants, the corresponding log-
likelihood function is

lN ;yðn;s; xÞ ¼ N log n� nT � N logs

� 1þ 1

x

� �XN
i¼1

log 1þ x
yi

s

� �
: ð6Þ

[9] Maximizing lN,y(n, s, x) with respect to the vector
parameter q = (n, s, x) leads to the maximum likelihood
(ML) estimates (n̂, ŝ, x̂), and consequently, to the GEV
estimates m̂ and ŷ, by using equation (4).

2.2. Time-Dependent GPD-Poisson Model

[10] An extension of the GPD-Poisson model in
section 2.1 is obtained by allowing its parameters to be
time-dependent, so that n(t) > 0, s(t) > 0 and �1 < x(t) <
1 may vary throughout the year (e.g., according to para-
metric expressions to be determined). Accordingly, the
GEV distribution inherits time-dependent parameters
�1 < m(t) < 1, y(t) > 0 and �1 < x(t) < 1. The
functions m(t), y(t) and x(t) can contain sine waves repre-
senting seasonal effects [see, e.g., Katz et al., 2002], linear
and/or exponential terms representing long-term trends,
and covariates representing environmental processes (e.g.,
El Niño), among others.
[11] The log-likelihood for this model can be obtained

from the daily version of equation (6) (i.e., the equation
obtained for a time interval of one day, instead of one year).
If the N exceedances y1, y2, . . ., yN are observed at days t1,
t2, . . ., tN over a T-year period, the log-likelihood function
for the time-dependent GPD-Poisson model is expressed as,

ly;t qð Þ ¼
X
t

hti log n tið Þ � n tið Þ
TS

� hti logs tið Þ
�

� hti 1þ 1

x tið Þ

� �

	 log 1þ x tið Þ yi

s tið Þ

� ��
; ð7Þ

where s(t) and n(t) are related to the GEV parameters using
the time-dependent version of equation (4); hti equals 1 if
there is an exceedance on day ti and 0 otherwise; Ts is a time
scaling constant so that Ts = 365.25 (for a daily time
interval); yi is the threshold excess on day ti; q is a vector of
regression parameters; and the sum over t is extended to all
the days with data available (i.e., days without data are
omitted).
[12] As shown in section 3, the vector q may contain more

than 10 regression parameters for some of the proposed
models, making it difficult to maximize the log-likelihood
function. Therefore an efficient global optimization proce-
dure has been used, namely the SCE-UA algorithm [Duan
et al., 1992], which is widely used in the calibration of
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highly nonlinear problems. The SCE-UA optimization
scheme has been applied successfully in all the cases
analyzed in this study.

2.3. Confidence Intervals

[13] Approximate standard errors for the estimators and
confidence intervals for the regression parameters are
obtained using standard likelihood theory [see, e.g., Coles,
2001]. For a large sample size n and assuming that the
proposed model is valid, the distribution of the ML estima-
tors q̂ is approximately multivariate normal with mean q (the
true parameter values) and covariance matrix given by the
inverse of the observed information matrix IO (q),

IO qð Þ ¼ � @2l qð Þ
@qi@qj

; i; j ¼ 1; :::; p; ð8Þ

evaluated at q = q̂. If an arbitrary term in the inverse of IO(q)
is sij, the square root of the diagonal entry sii is
approximately the standard error, se(q̂i), of the ML estimator
q̂i. Therefore confidence intervals for qi can be obtained in
the form [̂qi � zase(̂qi), q̂i + zase(̂qi)], where z0.95 = 1.96
gives a 95% confidence interval.

2.4. Model Diagnostics

[14] There are a number of procedures for model check-
ing when data are assumed to be identically distributed, but
they are not directly applicable to time-dependent random
variables unless some modifications are performed. One
possibility is to standardize the data, conditional on the
fitted parameter values. Smith [2001] provides a detailed
discussion of graphical procedures to examine the goodness
of fit of extreme value models for frequency (Z statistic) and
for intensity (W statistic). For given exceedance days t1, . . .,
tk, . . ., tN and corresponding threshold excess y1, . . ., yk, . . .,
yN, the Z statistic is the cumulative event rate of the Poisson
process between consecutive exceedances defined as

Zk ¼
Ztk
tk�1

n̂ tð Þdt; ð9Þ

where n̂(t) is the event rate of the Poisson process at t,
estimated according to the time-dependent version of
equation (4). If the model is correct, Z1, Z2, . . ., ZN should
be exponential random variables with mean 1. The W
statistic is given by

Wk ¼
1

x̂ tkð Þ
log 1þ x̂ tkð Þyk

ŷ tkð Þ þ x̂ tkð Þ u� m̂ tkð Þð Þ

" #
; ð10Þ

where m̂(t), ŷ(t), x̂(t) are the estimated location, scale and
shape time-dependent GEV parameters, respectively. Again,
if the model is correct, W1, W2, . . ., WN should also be
exponential variables with mean 1. Diagnostic probability-
probability (PP) and quantile-quantile (QQ) plots can be
made for both Z and W statistics. If the suggested model is
adequate, the PP and QQ plots should consist of points

close to the unit diagonal. It is important to note that both
plots must be checked simultaneously as they contain the
same information but on different scales. The application of
both diagnostic plots is performed in section 5 for the best
obtained model for the Washington buoy (46005) signifi-
cant wave height data set (see Figure 4).

2.5. Model Selection

[15] There are many potential models with different
formulations of the extreme value parameters as functions
of time and other covariates. Therefore the selection of the
simplest possible model (following the principle of parsi-
mony) that fits the data sufficiently well is important.
[16] Model selection can be performed using the likeli-

hood ratio test. With nested models MA 
 MB (MB with p
parameters and MAwith p-k parameters), we can assure that
model MB explains substantially (at the a level of signifi-
cance) more variability in the data than MA if

lB MBð Þ � lA MAð Þ½ � > 1

2
c2
k;1�a; ð11Þ

where lB(MB) and lA(MA) are the maximized log-likelihood
functions under models MB and MA, respectively, and
ck,1�a
2 is the 1 � a quantile of the c2 distribution with k

degrees of freedom.
[17] If the number of nested candidate models is large, the

quality of the models can be assessed systematically by
minimizing a penalty function such as the Akaike Informa-
tion Criteria (AIC) [Akaike, 1973],

AIC ¼ �2̂l pð Þ þ 2p; ð12Þ

where p is the number of parameters and l̂(p) is the
maximum of the log-likelihood resulting from each model.
This criterion assesses the quality of each model by making
a compromise between obtaining a good fit, which is
measured by how small the resulting �l̂(p) is, and using a
simple model, where simpler models use fewer parameters
than complex models. Therefore the smaller the criterion,
the better the model.

2.6. Estimation of Quantiles

[18] Estimates of the time-dependent extreme quantiles
are obtained by inverting equations (1)–(2)

ŷq tð Þ ¼
m̂ tð Þ � ŷ tð Þ

x̂ tð Þ
1� � log 1� qð Þ½ ��x̂ tð Þ
n o

; x̂ tð Þ 6¼ 0;

m̂ tð Þ � ŷ tð Þ log � log 1� qð Þ½ �; x̂ tð Þ ¼ 0;

8><
>: ð13Þ

where ŷq(t) is the time-dependent return level associated
with the return period 1/q (years) and 0 < q < 1. Confidence
intervals can be obtained, using the asymptotic normality
property of ML estimators, by the delta method. This
method expands the function ŷq in a neighborhood of the
ML estimates q̂, using a one-step Taylor approximation, and
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then takes the variance [Rice, 1994]. The standard error of
ŷq can then be estimated from

se ŷq tð Þ
� �

¼
Xp
i¼1

Xp
j¼1

@ŷq tð Þ
@qi

@ŷq tð Þ
@qj

sij

 !1=2

; ð14Þ

where the partial derivatives are evaluated at q̂.

3. Regression Model

[19] Likelihood-based methods allow modeling different
factors to explain the variability of the data and the non-
stationarity of the GEV or GPD-Poisson parameters.
Amongst these factors, we shall consider the annual vari-
ability (seasonality), a likely long-term trend and interan-
nual climate variability effects explained by global
meteorological indices.
[20] We express the model in terms of the GEV param-

eters using the time-dependent version of equation (4) to
relate the GPD-Poisson parameters to the equivalent GEV
parameters. Therefore a number of possible regression
models can be expressed in terms of the time-dependent
location, scale, and shape parameter of the GEV distribu-
tion. In this paper, we shall assume that the shape parameter
is constant (i.e., x(t) = xo). Seasonality will be modeled
through the seasonal location parameter

mS tð Þ ¼ bo þ b1 cos 2ptð Þ þ b2 sin 2ptð Þ þ b3 cos 4ptð Þ
þ b4 sin 4ptð Þ; ð15Þ

where bo is a mean value, t is given in years, b1 and b2 are
the coefficients corresponding to the annual cycle and b3
and b4 are the coefficients corresponding to the semiannual
cycle. Similarly, a long-term trend is incorporated in the
model by multiplying the seasonal location parameter by
exp(bLTt), where bLT is a trend. The exponential terms have
the property that, for small long-term variations (say, bLT !
0), the exponential exp(bLTt) is approximately equivalent to
(1 + bLTt), so that 100 bLT can be considered as a yearly
percentage of variability, when t is given in years. For
example, if bLT = 0.001 yr�1, this corresponds to an increase
in the location parameter of about 0.1% per year. More
complex models can be built allowing, for instance, a
quadratic law for the long-term trend, exp(bLTt + bLT2

t2), or
different trends for the mean value and the seasonal
component, parameterized as b0 exp(bLTt) + [b1 cos(2pt)
+ . . .] exp[(bLT + bLTS)t], where bLTS represents an extra
term associated to the seasonal long-term trend. Never-
theless, for the particular data set analyzed, the inclusion of
bLT2

and bLTS was far from significant.
[21] We introduce interannual climate variability in the

model by means of linear functions of regional climate
indices that represent atmospheric patterns related to tele-
connections from the tropics to the midlatitudes associated
with the El Niño–Southern Oscillation (ENSO), such as the
SOI [McPhaden, 2004] or PNA [Wallace and Gutzler,
1981]. SOI is based on the standard deviation of the
normalized pressure difference between Darwin (Australia)
and Tahiti (French Polynesia), varying usually between �4
and +4, with negative values during El Niño events and

positive values during La Niña events. The PNA pattern
involves a negative pressure anomaly over the northern
Pacific south of Alaska, combined with a positive anomaly
over the western mountain regions of North America and
another negative anomaly over the eastern U.S. and adjacent
Atlantic waters. This index is a measure of the strength and
duration of the westerly winds and the position of the jet
stream, all of these factors being of importance in the
conditions of wave generation which depends on wind
speeds, storm duration and fetch lengths [Hasselmann et
al., 1976].
[22] It would also be interesting to account for changes in

forcing associated with Pacific Decadal Variability (the
Pacific Decadal Oscillation, PDO) [Mantua et al., 1997].
However, the relatively short time series available makes it
impossible to obtain a reliable correlation with this index.
Obviously, disregarding this decadal-scale variability due to
the PDO may introduce some unavoidable uncertainty in the
long-term trend estimate b̂LT.
[23] Consequently, in this study we shall entertain the

SOI and PNA indices as possible covariates to explain data
variability. In this respect, our approach is similar to that of
Allan and Komar [2000], who used a stepwise multiple
regression analysis between the residual winter wave
heights and SOI and PNA-related indices. Thus the SOI
and PNA effects may be introduced in equation (15) as new
terms bSOI SOI(t) and bPNA PNA(t), respectively. Conse-
quently, a possible expression for the location parameter is

m tð Þ ¼ mS tð Þ exp bLT tð Þ þ bSOISOI tð Þ þ bPNAPNA tð Þ: ð16Þ

A similar analysis can be performed for the scale parameter,
giving

y tð Þ ¼ yS tð Þ exp aLT tð Þ þ aSOISOI tð Þ þ aPNAPNA tð Þ; ð17Þ

where yS(t) = ao + a1 cos(2pt) + a2 sin(2pt), ao is a mean
value, ai, i = 1, 2 are the seasonal coefficients, aLT is a long-
term trend and aSOI and aPNA allow for the SOI and PNA
effects in the scale parameter, respectively. It must be noted
that the parameterization of the time-dependent GEV
parameters can be adapted depending on the geophysical
variable and the location of each particular case.

4. Data

4.1. Buoy Data

[24] Data from Washington buoy (46005) provided by
NOAA are used in the analysis. The buoy is located about
400 Km away from the west coast of the United States
(46.05�N, 131.02�W) at 2780 meters depth. Mean wave
climate is characterized at this particular site by annual
mean significant wave height (Hs) of 2.7 m and annual
mean period of 7s. This data set is known to have a
significant trend for annually averaged values of Hs

(0.021 m yr�1 since 1978) [Gower, 2002] as well as for
the maximum annual Hs (0.108 m yr�1 since 1978. These
values, obtained following a least squares linear regression
technique, are reported by Komar and Allan [2004]). A 29-
year-long (1976–2004) Hs data set is available, although
with some gaps. The gaps are usually in the winter season
(ONDJFM), invalidating the use of the whole year for the
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AMM. Thus, for the AMM we remove from the analysis a
complete year if any of the months of the winter season of
that particular year has less than 40% of data. However, the
time-dependent GPD-Poisson model allows the consider-
ation of most of the available data (a filter is used to remove
days with less than 3 samples d�1). After applying this filter
to the initial 9372 days, 8661 days are available.

4.2. Selection of the Threshold Value and the
Time Span

[25] Two important issues that must be overcome when
using the peak over threshold approach are the selection of
the threshold u and the minimum time span Dt that will be
required to assume the independence of consecutive storm
events. Both the truncation value and the time span affect
the results in terms of the frequency and the exceedance
estimates [see, e.g., Coles, 2001; Beguerı́a, 2005; Luceño et
al., 2006].
[26] The selection of the threshold u implies a balance

between bias and variance. Too low a threshold will likely
violate the basis of the model, causing bias; too high a
threshold will identify few extremes, leading to high vari-
ance. The usual recommendation is to adopt as low a
threshold as possible so that the GPD model provides a
reasonable approximation to the exceedances.
[27] Concerning time span, Dt is chosen as the optimal

compromise between the minimum time interval over which
the Poisson process may be assumed to be valid [see Luceño
et al., 2006], the ‘‘physical’’ time interval to guarantee the
independency between consecutive storms, and the length
of the time series. A wide range of values of Dt has
been found in the literature (e.g., Morton et al. [1997] used
Dt =1.25 days, whereas Guedes Soares and Scotto [2004]
chose Dt = 20 days). A number of authors have analyzed
the patterns of atmospheric low-frequency variability trying
to obtain the length of the storms [see, e.g., Corti et al.,
1997; Chen and Yoon, 2002] for different areas around the
globe. For the northeast Pacific, this length is usually
associated to persistence large-scale atmospheric phenome-
na (blocking episodes) with about 30 blocked days per

winter and an average duration of 11 days [Corti et al.,
1997]. Moreover, this blocking activity is affected by
interannual climate variability. This means that Dt should
be time-dependent, making difficult the selection of the
independent storm events. However, this analysis is outside
the scope of this work. We have tested values between 3 and
10 days and, although the Poisson assumption is slightly
better satisfied with Dt = 6 days, we choose Dt = 3 days
because, as will be shown in section 5, the conclusions were
almost the same and the shorter time span gives a higher
number of extreme events and slightly smaller confidence
intervals.
[28] Different a priori exploratory methods based on

sample data (mean excess plot, L moment plot) as well as
a posteriori methods (stability of the parameter estimates
across a range of different thresholds, PP and QQ plots for Z
andW statistics) can be used to choose the threshold and the
time span. The mean excess plot, defined as the mean of all
excesses over the threshold (see details given by Davison
and Smith [1990] or Smith [2001]) for independent extreme
events (using a time span of 3 days) and the 95% confidence
intervals based on the approximate normality of sample
means are shown in Figure 1a. A clear linear trend appears
in the series from the lowest values of the threshold up to
the highest values (about 920 cm) where the plot becomes
unstable.
[29] The L moment plot (Figure 1b) shows the sample

(t̂3, t̂4) L moment estimates (see also details given by
Beguerı́a [2005]) for a given set of increasing threshold
values. The L moments are linear functions of the proba-
bility-weighted moments of the sample [Hosking and
Wallis, 1987]. The curve described by the theoretical GPD
L moments, derived by Hosking [1990], is also plotted. The
deviations from this theoretical curve help to select the
threshold. The points (every point represents a given thresh-
old u) describe an elliptical trajectory about the GPD curve,
which behaves as an attractor of the process until high
values of the threshold are reached (at which the variability
of the trajectories increase considerably because of the fast

Figure 1. (a) Mean excess plot with 95% confident intervals (dotted lines) and (b) L-moment plot for
exceedances of Hs over selected thresholds (from 600 to 1100 cm) with the theoretical GPD curve (dash-
dotted line) at Washington buoy (46005).
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decreasing number of exceedances). The range 600 < u <
900 cm appears to be compatible with the GPD model.
[30] Additionally, and using the simpler GPD model of

section 2.1, an analysis of the stability of the parameters is
carried out. For every value of the threshold u, we calculate
the parameter estimates ŝu and x̂u, and reparameterize the
GPD scale parameter as ŝ* = ŝu � x̂uu. Standard errors for
ŝ* are obtained using the delta method (see details given by
Coles [2001]). The plots of ŝ* and x̂u and the associated
standard errors against u are shown in Figure 2. As in the
mean excess plot and the L moment plot, perturbations are
also apparent here for u > 900 cm.
[31] After inspection of these plots, we conclude that a

threshold of about 800 is adequate for the GPD model.
Finally, we choose u = 810 cm (which corresponds to the
99.5% percentile of the empirical Hs distribution).
[32] Annual maximum Hs and exceedances over thresh-

old u = 810 cm are shown in Figure 3. Annual maxima
values are marked by a circle. The minimum time span to
assure independence between consecutive storms is chosen
to be 3 days. For this case, the annual maximum series is
composed of T = 23 years and the number of independent
exceedances is N = 125 (5.4 storms per year). Simple
inspection of the time series reveals an important positive

trend, not only in the intensity but also in the frequency of
major storms.

5. Results

[33] In order to assess the importance of the different
processes which explain the long-term trends, various sub-
models obtained from equations (16) and (17) were ana-
lyzed for different combinations of the model parameters.
Table 1 shows the set of parameters used by each submodel
together with the ML estimates of these parameters, the
number of parameters p, the maximum attained by the log-
likelihood function for every submodel and the AIC value.
It should be noted that the maxima of the log-likelihood
functions obtained from models GEV0 and GEV1 are not to
be compared with the corresponding values for models
GPD-P0 to GPD-P6 because the former are based on a
much smaller sample size.

5.1. Models Without Climate Indices

[34] Comparing GEV1 model versus GEV0, it is remark-
able that the inclusion of the long-term trend (b̂LT = 0.0106
yr�1) is significant at the 0.05 level of significance since the
difference between the maxima of the log-likelihood func-

Figure 2. Model shape and modified scale GPD parameters (points) and 95% confidence intervals
(vertical bars) versus threshold for 46005 Hs data. Time span is Dt = 3 days.
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Figure 3. Annual maxima series and peaks of exceedances over the 99.5% Hs empirical quantile.
Washington buoy (46005).

Table 1. Summary of the Results for Different Models: ML Estimates for the Time-Dependent GEV Parametersa

ML Estimate GEV0 GEV-1 GPD-P0 GPD-P1 GPD-P2 GPD-P3 GPD-P4 GPD-P5 GPD-P6

b̂0 985.5673 846.5659 1049.317 983.746 879.900 954.280 878.762 876.220 886.476
b̂1 . . . . . . . . . . . . 269.191 . . . 254.969 260.584 277.962
b̂2 . . . . . . . . . . . . 47.134 . . . 41.153 22.608 49.926
b̂3 . . . . . . . . . . . . �47.847 . . . �49.337 �48.793 �48.353
b̂4 . . . . . . . . . . . . �75.199 . . . �76.353 �90.889 �78.506
b̂LT . . . 0.0106 . . . 0.00453 0.00404 0.00500 0.00361 0.00354 0.00156
b̂LT2 . . . . . . . . . . . . . . . . . . . . . . . . 0.068
b̂SOI . . . . . . . . . . . . . . . 30.624 23.941 27.564 . . .
b̂PNA . . . . . . . . . . . . . . . 152.567 86.221 90.394 . . .
â0 157.6126 124.6533 119.807 118.643 106.233 123.079 108.054 111.274 106.229
â1 . . . . . . . . . . . . . . . . . . . . . �2.609 . . .
â2 . . . . . . . . . . . . . . . . . . . . . �17.396 . . .
x̂0 �0.2593 �0.0876 �0.215 �0.219 �0.217 �0.140 �0.195 �0.185 �0.216
p 3 4 3 4 8 6 10 12 9
l �149.5461 �146.29 �658.216 �655.192 �593.592 �641.268 �589.127 �587.906 �593.520
AIC 1322.433 1318.384 1203.183 1294.536 1198.255 1199.811 1205.040

aLocation parameters include the following: b0 is a mean value, b1 and b2 are the coefficients corresponding to the annual cycle, b3 and b4 are the
coefficients corresponding to the semiannual cycle, bLT is a long-term trend, bLT2 models a quadratic law for the long-term trend, and bSOI and bPNA are
linear coefficients for the SOI and PNA climate indices, respectively. Scale parameters include the following: a0 is a mean value, a1 and a2 are the
coefficients corresponding to the annual cycle. Shape parameters include the following: x0, number of parameters (p), maximum log likelihood function (l),
and AIC criteria (equation (12)).
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tions is greater than 0.5 c1,095
2 = 1.92. This implies an

annual trend of approximately b̂0b̂LT = 8.5 cm yr�1. If we
compare GPD-P1 model versus GPD-P0 we also find that
the trend is significant, but the annual trend is now about
b̂0b̂LT = 4.4 cm yr�1.
[35] The improvement of the fit is impressive as judged

by the value of l when seasonality is considered. Thus,
comparing model GPD-P2 (that includes annual and semi-
annual cycles for the location parameter) versus GPD-P1,
we obtain an increase of more than 61 units in the
maximum log-likelihood function, which is significant
at the 0.000001 level. The annual trend is even smaller
(b̂0b̂LT = 3.5 cm yr�1). We have also tried a parabolic trend

(bLTt + bLT2
t2) in model GPD-P6, but it is not statistically

significant at the 0.05 level.

5.2. Models With Climate Indices

[36] This model can be adapted to account not only for
long-term trends but also for decadal climate variability.
Thus model GPD-P3 considers a long-term trend and both
the SOI and the PNA indices, which are known to be highly
correlated with the wave climate at buoy 46005 [see, e.g.,
Allan and Komar, 2000]. Comparing model GPD-P3 versus
model GPD-P1, it is seen that the inclusion of SOI and PNA
in the location parameter improves l about 14 units, which is
significant at the 0.00001 level.

Figure 4. Diagnostic QQ and PP plots for Z- and W-statistics (see equations (9) and (10))
corresponding to model GPD-P4. Points close to the diagonal suggest an adequate goodness of fit.
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[37] The inclusion of seasonality in the location parame-
ter (annual and semiannual cycles) in model GPD-P4 helps
to explain more data variability as can be seen in the
maximum log-likelihood functions (more than 52 units).
[38] We also tested the inclusion of nonstationarity in the

scale parameter by including an annual cycle (equation (17)),
yS(t) = a0 + a1 cos(2pt) + a2 sin(2pt) (model GPD-P5),
but (a1, a2) were not significant at the 0.05 level. Other
possible models including aLT, aSOI and aPNA were not
significant.

5.3. Selected Model

[39] Therefore, for the particular data set analyzed, model
GPD-P4 can be considered the best choice (note also that its
AIC is the lowest, supporting the selection of GPD-P4
model). For this particular model, the number of parameters
is n = 10 and the vector parameter is q = (b0, b1, b2, b3, b4,
bLT, bPNA, bSOI, a0, x0). Thus we obtain constant values for
the scale and shape parameters (y(t) = a0, x(t) = x0) and the
time-dependent location parameter is expressed as,

m tð Þ ¼ bo þ b1 cos 2ptð Þ þ b2 sin 2ptð Þ þ b3 cos 4ptð Þ½ þb4 sin 4ptð Þ�
	 exp bLT tð Þ þ bSOISOI tð Þ þ bPNAPNA tð Þ ð18Þ

[40] For this particular model, every unit of PNA explains
86 cm of the variation of the data. SOI seems to play a
minor role, slightly affecting during La Niña events (posi-
tive SOI values are associated with El Niño, while negative
SOI values indicate La Niña). These correlations with PNA
and SOI indices are in coincidence with previous works by

Allan and Komar [2000] and Bromirski et al. [2005] for the
residual (or anomaly) winter wave energy.
[41] The estimated long-term trend is not affected much

by the decadal variability, giving an annual trend of b̂0b̂LT =
3.2 cm yr�1. It is interesting to note that, for the particular
data set analyzed, the long-term trends of these statistical
extreme value models are significantly smaller than previ-
ous results using a least squares linear regression tech-
nique for annual maximum series for the same data set
(10.8 cm yr�1) [Komar and Allan, 2004]. The authors
believe that the proposed model gives a more reliable
estimate of the long-term trend.

5.4. Sensitivity of the Best Model

[42] We have used the Z and W statistics described in
section 2.4 to test the goodness of the fit of the model. As an
example, Figure 4 shows the results for model GPD-P4. The
fit of the GPD model is remarkably good (PP and QQ plots
for W statistic) but the Poisson distribution (PP and QQ
plots for Z statistic) does not fit so well. This is attributable
to the time span Dt = 3 days chosen between independent
storms. Better fits for the Z statistics are achieved using Dt =
6 days but, as indicated previously, we prefer to present the
results for Dt = 3 days to avoid the loss of useful extreme
data (11% of data), considering that the conclusions are very
similar otherwise. The differences are less than 10% for all
the parameter estimates. As an example, for Dt = 6 days the
long-term trend for model GPD-P4 is b̂0b̂LT = 3.0 cm yr�1

(about a 6% difference). The Poisson process assumption is
an open question that has recently been addressed by
Luceño et al. [2006].

Figure 5. Histogram of the time of occurrence of threshold excesses (bars) and time-dependent event
rate v̂(t) within a year in an average year (solid line), according to model GPD-P4.
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[43] We have also analyzed the sensitivity of the model
to the selection of the threshold by selecting the 99.25 (u =
770 cm and N = 159 data) and the 99.75 (u = 880 cm and
N = 76 data) percentile of the empirical Hs distribution.
Compared with u = 810, the results are practically the
same for u = 770 as far as bPNA and bSOI are concerned,
whereas the long-term trend is somewhat higher (b̂0b̂LT =
4.6 cm yr�1). For u = 880, the uncertainty in the parameter
estimates increases (longer confidence intervals) because
of the smaller size of the sample.

5.5. Time-Dependent Parameters

[44] Figure 5 shows a comparison between the empirical
event rate of exceedances (bar plot) versus the estimated
event rate n̂(t) in an average year for model GPD-P4
(continuous line) where n̂(t) is obtained from equation (4)
using the ML estimates. By simple inspection, one can see
that this model is able to reproduce the shape of the
frequency plot very accurately.
[45] Model GPD-P4 is also able to reproduce the season-

ality of the extreme Hs amplitudes. Figure 6 shows all the
threshold excesses (dots) versus the ML estimates of the
time-dependent location parameter m(t) for GPD-P4 model

in an average year (continuous line). The results show a
clear seasonality in the times of high exceedances, with
many fewer exceedances during the summer months. The
inclusion of the seasonality improves the fit (which is
statistically confirmed in Table 1).

5.6. Time-Dependent Quantiles

[46] Comparison between the different models in terms of
goodness of fit and significance of the parameters involved
can be demonstrated by means of quantile plots, as illus-
trated in Figure 7 for the time-dependent 50-year return
period quantile value of the distribution of the annual
maxima for the year 1992 (q = 1/50 = 0.02 in equation
(12)). Solid lines represent quantile estimates, ŷ0.02(t), and
dashed lines stand for the 95% confidence intervals, [ŷ0.02(t)
� 1.96 se (ŷ0.02(t)), ŷ0.02(t) + 1.96 se (ŷ0.02(t))]. We have
added to this figure the monthly maximum values (circles)
to demonstrate the seasonal behavior of the extreme values
(note however that the circles and the lines are not directly
comparable because the former represent monthly maxima
whereas the latter correspond to annual maxima). Models
GPD-P0 and GEV0 do not consider seasonality, but the
former produces smaller confidence intervals because the

Figure 6. Estimated location parameter m(t) for the GEV distribution of annual maxima (continuous
line) and 99.5% exceedances over threshold u = 810 cm (dots) versus day within year, according to
model GPD-P4.
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Figure 7. Comparison of estimated time-dependent 50-year return period quantiles for the GEV
distribution of annual maxima evaluated at the year 1992 (continuous lines) with their confidence bands
(dashed lines) for the indicated models, versus month within year. Circles represent monthly maximum
values.

Figure 8. Comparison of 25-year quantiles time evolution and predictions from 2004 on, for the GEV
distribution of annual maxima. Dots indicate exceedances over the 99.5% quantile of the empirical
distribution of Hs. Annual maxima are indicated by circles.
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estimates are based on 125 data rather than simply on the 23
annual maxima. The inclusion of the long-term trend in
model GPD-P1 further improves the goodness of fit, as
indicated by the still smaller confidence interval. The
introduction of seasonality (using model GPD-P2) helps to
reproduce the variability along the year of the monthly
extreme values and produces a dramatic decrease in the
point estimates and confidence intervals corresponding to
the summer season which is counterbalanced by a relatively
small ‘‘increase’’ during winter.
[47] Finally, the evolution of the 25-year return period Hs

quantile is shown in Figure 8 for the different models
considered. As in Figure 3, annual maxima Hs (circles)
and exceedances over the 99.5% quantile of the empirical
Hs distribution (dots) are shown. A horizontal dotted dashed
line represents the constant quantile for GPD-P0 model. The
long-term trend estimated from model GPD-P1 (4.4 cm yr�1;
dashed line) is smaller than that from GEV1 (8.5 cm yr�1;
grey dashed line). Models GPD-P2 (3.5 cm yr�1; solid line)
and GPD-P4 (3.2 cm yr�1; bold line) are able to reproduce
not only the long-term trends, but also seasonality. More-
over, GPD-P4 simulates the interannual climate variability,
which does not affect the long-term trend estimation
(see Table 1). It is important to note that the GPD-P4 model
is not extrapolated to the year 2020 since the uncertainty
of the long-term prediction of the PNA and the SOI indices
is very high. Moreover, the long-term trend prediction
should be analyzed with caution since the Pacific decadal
variability (in terms of the PDO) is not considered in the
model.

6. Conclusions

[48] A statistical model to estimate long-term trends in the
frequency and intensity of severe storm waves is presented
in this paper. The model is based on a time-dependent
version of the POT model and is applied to the Washington
buoy (46005) Hs data set.
[49] The inclusion in the model of time-dependent param-

eters such as sine waves to represent seasonal effects,
exponential functions to model the long-term trend and
covariates for PNA and SOI, representing the interannual
climate variability, improves the goodness of fit of the
model to the data and the significance of the model
parameters, especially for the long-term trend. This is
because (1) the POT model uses a number of major storms
considerably larger than the number of annual maxima and
(2) the seasonal-to-decadal modulations included in the
model explain some variability in the data and consequently
reduce the uncertainty in the determination of the long-term
trend.
[50] For the particular data set analyzed (Hs measured at

Washington NOAA buoy, 46005), the long-term positive
trend estimate tends to decrease slightly as the number of
factors in the model increases. An important conclusion is
that PNA and SOI covariates practically do not affect the
long-term trend estimation. Whether this trend may be
expected to continue in the future is an open question that
should be addressed considering the changes associated
with the Pacific decadal variability.
[51] Results show that the model is appropriate for a

detailed analysis of long-term trends and variability of

extreme waves, providing time-dependent quantiles and
confidence intervals.
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