## Minerals and Metals for a Low Carbon Future: The Need for 'Climate Smart Mining'

**Daniele La Porta** 

### World Bank Energy and Extractives Climate Change



WORLD BANK GROUP

## **Presentation outline**

# 01

1. Why a lowcarbon future will be more mineral intensive 02

2.Implications for mineral rich developing countries 03

3. Defining 'Climate Smart Mining

# 04

4. Conclusions and Next Steps

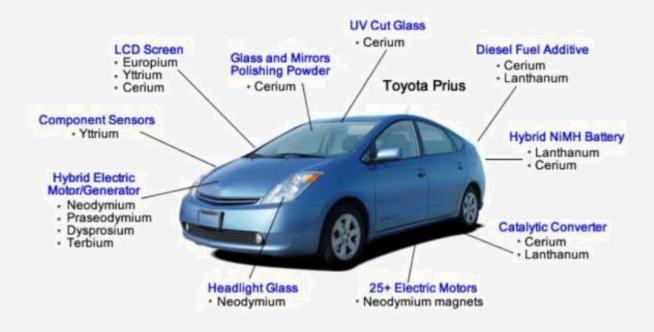


## Implications of a Carbon Constrained Future for Minerals and Metals

# Without metals there would simply be no low carbon future possible...

### **One 3-MW turbine contains**

- 335 tons of steel, including
  1 ton of metallurgical coal
- 4.7 tons of copper.
- 1,200 tons of concrete (cement and aggregates)


- 3 tons of aluminum.
- 2 tons of rare earth elements.
- zinc
- molybdenum
  Source: (NW Mining Association)





# Electric Vehicles (EVs): EVs are set to triple in two years

### Electric hybrid cars use twice as much copper as non-hybrid cars







5

### The Growing Role of Minerals for a Low Carbon Future

### Examines the implications of changing material requirements for the mining and metals industry as a result of a low carbon energy future.

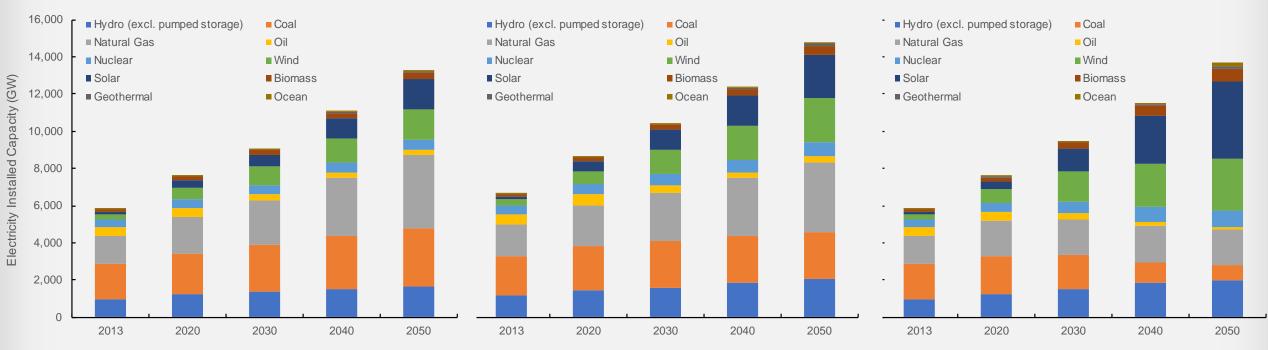
How can resource rich developing countries in Latin America best position themselves to take advantage of the evolving commodities market ?



#### The Growing Role of Minerals and Metals for a Low Carbon Future



June 2017




## IEA's ETP 2016 Scenarios

#### IEA's Energy Technology Perspective Scenarios For Electricity Installed Capacity

4 degree scenario

#### 6 degree scenario





2 degree scenario

Source: IEA ETP 2016

## **Technology Studied**

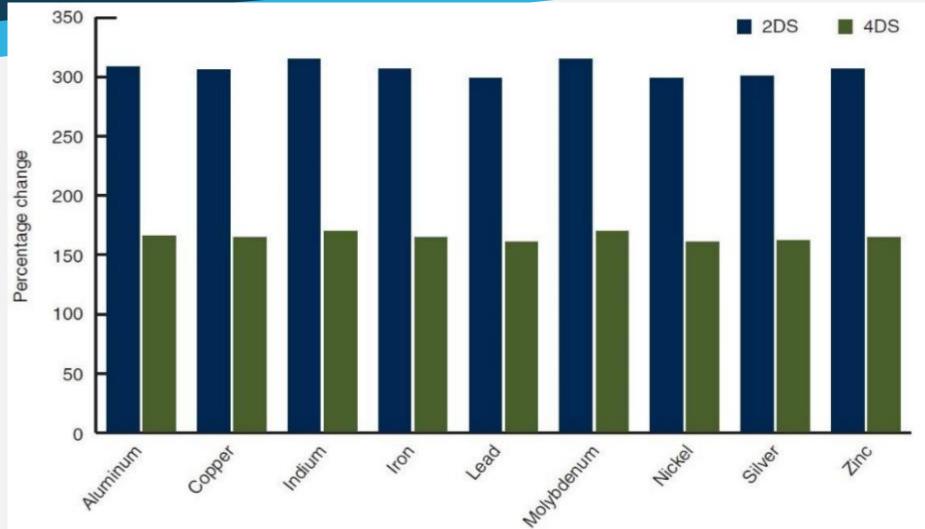
| Wind                                                              | Onshore                             |
|-------------------------------------------------------------------|-------------------------------------|
| Ň                                                                 | Offshore                            |
|                                                                   | Photovoltaics – crystalline silicon |
| <u> </u>                                                          | Photovoltaics – CdTe                |
| Solar                                                             | Photovoltaics – CIGS                |
|                                                                   | PV – amorphous silicon              |
|                                                                   | CSP                                 |
| Energy Storage<br>(split between li-<br>ion, lead-acid,<br>other) | Automotive                          |
| Energy Storage<br>split between li<br>ion, lead-acid,<br>other)   | Grid-scale                          |
| Ene<br>(split<br>ion                                              | Decentralise                        |

- Additionally, metal demand from key fossil fuel technology was accounted for to provide a baseline
- Limitation on inclusion of other technology, such as CCS, because of lack of studies on the material demand of those technologies
- Limited to generation technologies. Aspects such as a metal demand from grid expansion are not accounted in the study.



## Intra-Technology Choice Matters

### **Comparison of Metal Content**


| Wind Turbi | Wind Turbines Technologies |              |          | Solar PV  | Technolo | ogies |           | Batt      | ery Technologie | es          |
|------------|----------------------------|--------------|----------|-----------|----------|-------|-----------|-----------|-----------------|-------------|
|            | Geared                     | Direct drive |          | c-silicon | CIGS     | CdTe  | a-silicon |           | Lead-acid       | Lithium-ion |
| Aluminum   | Х                          | X            | Aluminum | Х         |          |       |           | Aluminum  |                 | х           |
| Copper     | Х                          | Х            | Connor   |           | V        | V     |           |           |                 |             |
| Chromium   | Х                          | Х            | Copper   |           | Х        | Х     |           | Cobalt    |                 | Х           |
| Iron       | Х                          | Х            | Indium   |           | Х        |       |           | Lead      | x               |             |
| Lead       |                            | Х            | Iron     | Х         |          |       |           |           |                 |             |
| Manganese  | Х                          | Х            | Lead     | Х         |          |       |           | Lithium   |                 | Х           |
| Nickel     | Х                          | Х            | Nickel   | Х         |          |       |           | Manganese |                 | Х           |
| Neodymium  |                            | Х            | Silver   | Х         |          |       |           | Nickel    |                 | x           |
| Steel      | Х                          | Х            |          |           |          |       |           |           |                 | ~           |
| Zinc       | Х                          | Х            | Zinc     |           |          | Х     | Х         | Steel     | Х               | Х           |

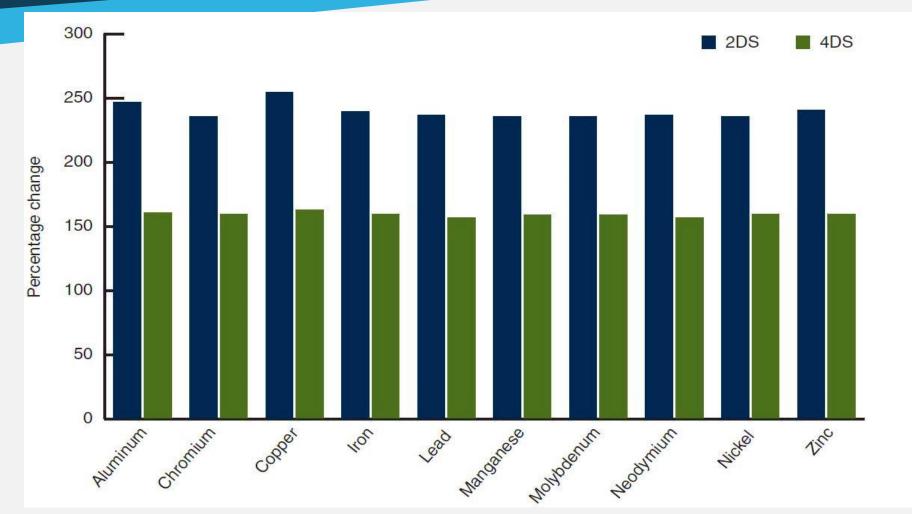
- Different sub-technologies have different metal demands
- Large level of uncertainty in intra-technology development trends



9

# Example: Change in metal demand from Solar PV (as percentage change from 6 degree scenario)

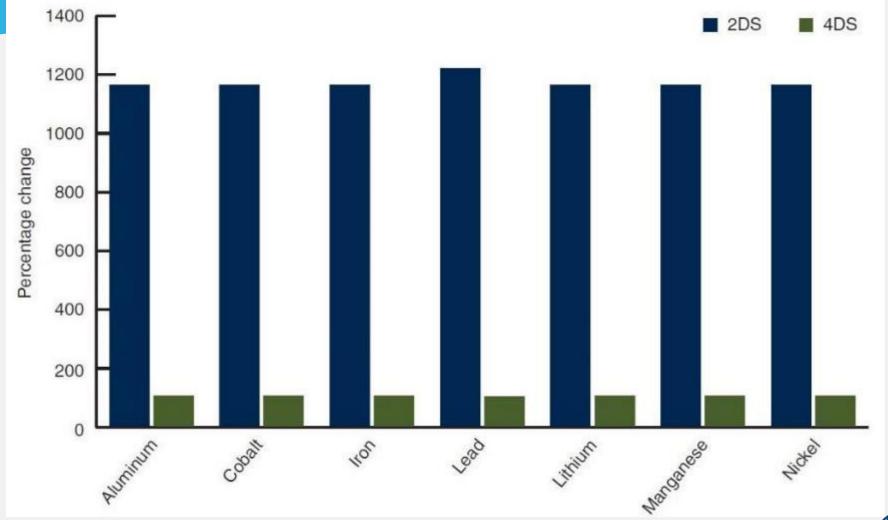



Source: WB Analysis Note: Values are derived from mean value of 'metal per MW' demand



10

### Change in metal demand from Wind


(as percentage change from 6 degree scenario)



Source: WB – Cambridge Team Analysis Note: Values are derived from mean value of 'metal per MW' demand



### Change in metal demand from Energy Battery Storage (as percentage change from 6 degree scenario)



Source: WB Analysis Note: Values are derived from mean value of 'metal per MW' demand



# Implications for Mineral Rich Developing Countries

13

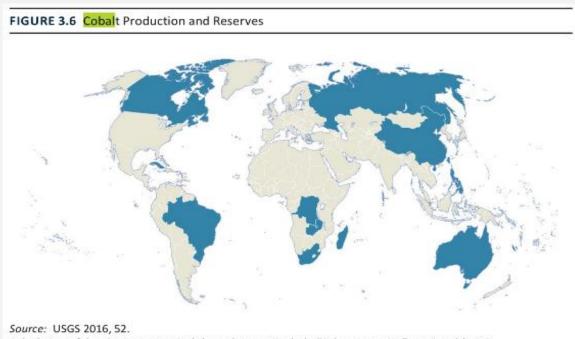
## Mapping Critical Metals: Bauxite/Aluminum



Developing Countries % of Bauxite Production represents 52%, without China, 30%. Developing Countries % of Bauxite Reserves represents 65%, without China 63%. Major Latin American producer/reserves: Brazil

#### Production and Reserves for 2015 (Thousand Metric Tons)

|                 | Mine Production | Reserves   |
|-----------------|-----------------|------------|
| AUSTRALIA       | 80,000          | 6,200,000  |
| CHINA           | 60,000          | 830,000    |
| MALAYSIA        | 21,200          | 40,000     |
| INDIA           | 19,200          | 590,000    |
| GUINEA          | 17,700          | 7,400,000  |
| JAMAICA         | 10,700          | 2,000,000  |
| GREECE          | 6,600           | 250,000    |
| RUSSIA          | 6,600           | 200,000    |
| KAZAKHSTAN      | 5,200           | 160,000    |
| SURINAME        | 2,200           | 580,000    |
| BRAZIL          | 2,000           | 2,600,000  |
| GUYANA          | 1,700           | 850,000    |
| VENEZUELA       | 1,500           | 320,000    |
| VIETNAM         | 1,100           | 2,100,000  |
| INDONESIA       | 1,000           | 1,000,000  |
| USA             | N/A             | 20,000     |
| OTHER COUNTRIES | 8,500           | 2,400,000  |
| TOTAL           | 274,000         | 28,000,000 |




### Challenges for Aluminum and Bauxite

- Energy source is a huge variable in competitiveness of aluminum producers in a carbon constrained world
- Contamination and water issues with bauxite mining in Brazil

### Grid supply with 100% cost pass-through (carbon costs in 2013 without support measures) 100% 80% Carbon costs (% of EBITDA) 60% 40% 20% Scope 2 Scope 1 0% Australia Canada -Canada - BC EU South Africa Quebec

## Mapping critical Metals: Cobalt



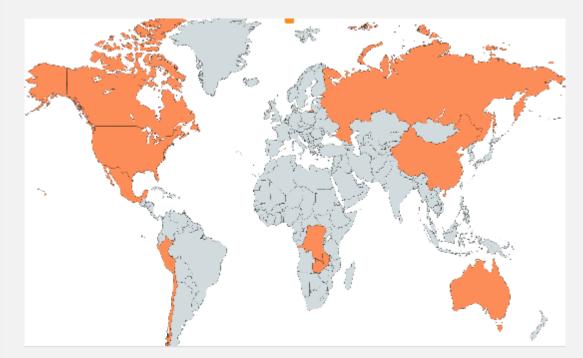
Calculation of developing-countries' share does not include "Other countries" row in table 3.6.

Developing countries' share of cobalt production: 75%; without China, 70 %.

Developing countries' share of cobalt reserves: 68%; without China, 67% Major Latin American producers/reserves: Brazil

#### Production and Reserves for 2015 Metric tons)

|                  | Production | Reserves   |
|------------------|------------|------------|
| CONGO (KINSHASA) | 63,000     | 3,400,000  |
| AUSTRALIA        | 6,000      | 1, 100,000 |
| ZAMBIA           | 2,800      | 270,000    |
| PHILIPPINES      | 4,600      | 250,000    |
| RUSSIA           | 6,300      | 250,000    |
| CANADA           | 6,300      | 240,000    |
| NEW CALEDONIA    | 3,300      | 200,000    |
| MADAGASCAR       | 3,600      | 130,000    |
| CHINA            | 7,200      | 80,000     |
| BRAZIL           | 2,600      | 78,000     |
| SOUTH AFRICA     | 2,800      | 31,000     |
| OTHER COUNTRIES  | 7,700      | 633,000    |
| TOTAL            | 120,400    | 7, 162,000 |




# Challenges for Cobalt

- Poor data and governance systems in key developing countries
  - Predominated by artisanal practices (ASM)
- Child labor
- Mostly a by-product of copper and nickel extraction



## Mapping critical Metals: Copper



Developing countries' share of copper production: 57%; without China, 47%.

Developing countries' share of copper reserves: 50%; without China, 46%.

Major Latin American Producers/Reserves: Chile, Peru

#### Production and Reserves for 2015 (Thousand Metric tons)

|                 | Production | Reserves |
|-----------------|------------|----------|
| CHILE           | 5,700      | 210,000  |
| AUSTRALIA       | 960        | 88,000   |
| PERU            | 1,600      | 82,000   |
| MEXCIO          | 550        | 46,000   |
| USA             | 1,250      | 33,000   |
| RUSSA           | 740        | 30,000   |
| CHINA           | 1,750      | 30,000   |
| CONGO           | 990        | 20,000   |
| ZAMBIA          | 600        | 20,000   |
| CANADA          | 695        | 11,000   |
| OTHER COUNTRIES | 3,900      | 150,000  |
| TOTAL           | 18,700     | 720,000  |



# **Challenges for Copper**

- Ever decreasing 'concentration levels' means growing:
  - GHG emissions
  - Energy requirements
  - Water impacts
  - Ecosystems and local communities impacts

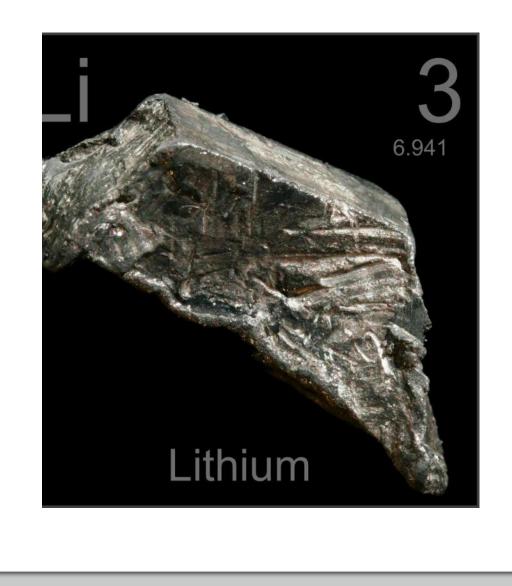


## Mapping critical metals: Lithium



Developing countries % of lithium production 52%, without China 45% Developing countries % of lithium reserves 91%, without China 68%

Major Latin American Producers/Reserves: Chile, Argentina, Brazil (Bolivia)


#### Lithium Production and Reserves for 2015 (Metric tons)

|           | Production | Reserves     |
|-----------|------------|--------------|
| AUSTRALIA | 13,400     | 1,500,000    |
| CHILE     | 11,700     | 7,500,000    |
| ARGENTINA | 3,800      | 2,000,000    |
| CHINA     | 2,200      | 3,200,000    |
| ZIMBABWE  | 900        | 23,000       |
| PORTUGAL  | 300        | 60,000       |
| BRAZIL    | 160        | 48,000       |
| USA       | N/A        | N/A          |
| TOTAL     | ~ 32,500   | ~ 14,000,000 |



## Challenges for Lithium

- Poor data and governance systems on lithium in key developing countries
- Hard mining activities require significant energy and chemicals, as well as significant land clearing
- Brine ponds can involve water quality/accessibility issues for local communities



## Mapping critical Metals: Manganese

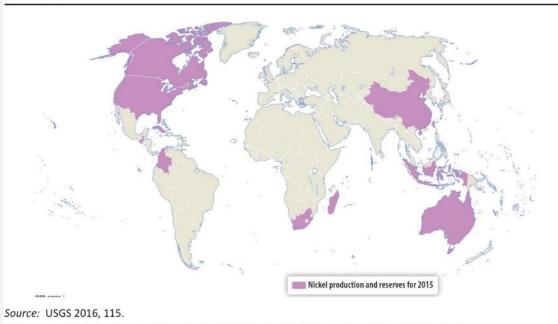


Developing countries % of manganese production 79%, without China 63% Developing countries % of manganese reserves 54%, without China, 47% Major Latin American Producers/Reserves: Brazil, Mexico

#### Manganese Production and Reserves for 2015 (Thousand metric tons)


|                 | Production | Reserves |
|-----------------|------------|----------|
| SOUTH AFRICA    | 6,200      | 200,000  |
| CHINA           | 3,000      | 44,000   |
| AUSTRALIA       | 2,900      | 91,000   |
| GABON           | 1,800      | 22,000   |
| BRAZIL          | 1,000      | 50,000   |
| INDIA           | 950        | 52,000   |
| MALAYSIA        | 400        | N/A      |
| GHANA           | 390        | 13,000   |
| KAZAKHSTAN      | 390        | 5,000    |
| UKRAINE         | 390        | 140,000  |
| MEXICO          | 240        | 5,000    |
| BURMA           | 100        | N/A      |
| USA             | N/A        | N/A      |
| OTHER COUNTRIES | 740        | SMALL    |
| TOTAL           | 18,000     | 620,000  |




22

# Challenges for Manganese

- Impact of open pit manganese mining on long term health of children living in local areas
- Water contamination in local river systems



## Mapping Critical Metals: Nickel

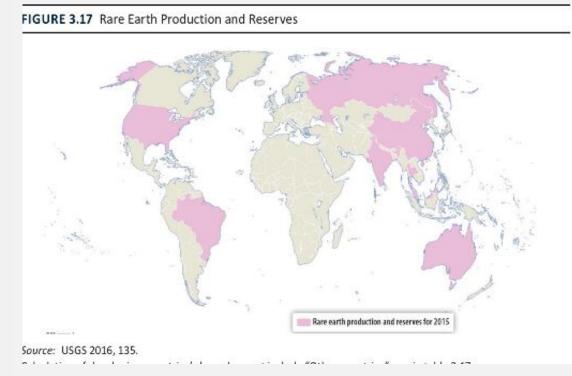


Calculation of developing-countries' share does not include "Other countries" row in table 3.15.

FIGURE 3.15 Nickel Production and Reserves

Developing countries % of nickel production 29%, without China 25% Developing countries % of nickel reserves 37%, without China, 34% Major Latin American Producers/Reserves: Cuba, Guatemala, Colombia Manganese Production and Reserves for 2015 (Metric tons)

|                 | Production | Reserves   |
|-----------------|------------|------------|
| AUSTRALIA       | 234,000    | 19,000,000 |
| NEW CALEDONIA   | 190,000    | 8,400,000  |
| CUBA            | 57,000     | 5,500,000  |
| INDONESIA       | 170,000    | 4,500,000  |
| SOUTH AFRCIA    | 53,000     | 3,700,000  |
| CHINA           | 102,000    | 3,000,000  |
| CANADA          | 240,000    | 2,900,000  |
| GUATEMALA       | 50,000     | 1,800,000  |
| MADAGASCAR      | 49,000     | 1,600, 000 |
| COLOMBIA        | 73,000     | 1, 100,000 |
| UNITED STATES   | 26,500     | 160,000    |
|                 |            |            |
| OTHER COUNTRIES | 410,000    | 6,500,000  |
| TOTAL           | 2,530,000  | 79,000,000 |




## Challenges for Nickel

- Significant environmental and health impacts from local air pollutants and water contamination
- Global warming potential of mining and processing nickel the eighth highest amongst 63 metals examined (<u>Life Cycle Assessment of</u> <u>Metals</u>)



## Mapping Critical Metals: Rare Earth Elements



Developing countries' share of rare earth production: 86%; without China, 2% Developing countries' share of rare earth reserves: 62%; without China, 19% Major Latin American Producers/Reserves: Brazil

#### Production and Reserves for 2015 (Metric tons)

|                 | Production | Reserves                     |
|-----------------|------------|------------------------------|
| CHINA           | 105,000    | 55,000,000                   |
| BRAZIL          | 0          | 22,000,000                   |
| AUSTRALIA       | 10,000     | 3,200,000                    |
| INDIA           | N/A        | 3,000,000                    |
| USA             | 4,100      | 1,800,000                    |
| MALAYSIA        | 200        | 30,000                       |
| RUSSIA          | 2,500      | LISTED IN OTHER<br>COUNTRIES |
| OTHER COUNTRIES | N/A        | 41,000,000                   |
| TOTAL           | 124,000    | 130,000,000                  |



## **Challenges of Rare Earth Elements**

- Monopoly of supply and production in China
- Poor data in key regions: currently Africa is completely 'blank' on Rare Earth Elements
- Mostly a by product of 'mainstream' minerals, such as zinc, etc.



## Mapping Critical Metals: Silver

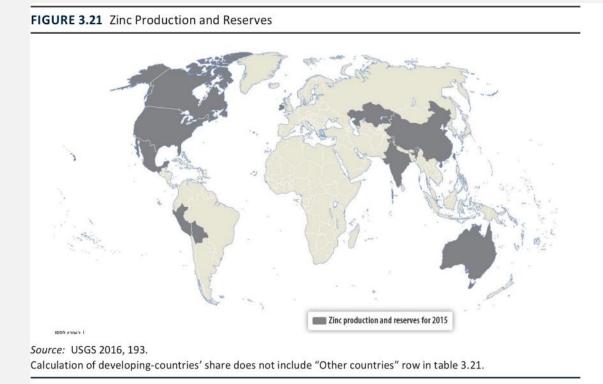


Source: USGS 2016, 153. Calculation of developing-countries' share does not include "Other countries" row in table 3.19.

FIGURE 3.19 Silver Production and Reserves

Developing countries' share of silver production: 40%; without China, 25%. Developing countries' share of rare earth reserves: 46 %; without China 38%. Major Latin American Producers/Reserves: Peru, Chile, Mexico, Bolivia (Argentina)

#### Production and Reserves for 2015 (Metric tons)


|                | Production | Reserves |
|----------------|------------|----------|
| PERU           | 3,800      | 120,00   |
| AUSTRALIA      | 1,700      | 85,000   |
| POLAND         | 1,300      | 85,000   |
| CHILE          | 1,600      | 77,000   |
| CHINA          | 4,100      | 43,000   |
| MEXICO         | 5,400      | 37,000   |
| UNITED STATES  | 1,100      | 25,000   |
| BOLIVIA        | 1,300      | 22,000   |
| RUSSIA         | 1,500      | 20,000   |
| CANADA         | 500        | 7,000    |
| OTHER COUNRIES | 5,000      | 50,000   |
|                |            |          |
| TOTAL          | 27,300     | 570,00   |



## Challenges of Silver

- Precious metal means supply is relatively limited
- Low concentration levels means greater pressure on managing environment and social issues (tailings, land management, etc.)

## Mapping Critical Metals: Zinc



Developing countries' share of zinc production: 59%; without China, 22%. Developing countries' share of copper reserves: 41%; without China, 22%. Major Latin American Producers/Reserves: Peru. Bolivia, Mexico

#### Production and Reserves for 2015 (Thousand Metric tons)

|                 | Production | Reserves |
|-----------------|------------|----------|
| AUSTRALIA       | 1,580      | 63,000   |
| CHINA           | 4,900      | 38,000   |
| PERU            | 1,370      | 25,000   |
| MEXCIO          | 660        | 15,000   |
| INDIA           | 830        | 10,000   |
| UNITED STATES   | 850        | 11,000   |
| CANADA          | 300        | 6,200    |
| BOLIVIA         | 430        | 4,600    |
| KAZAKHSTAN      | 340        | 4,000    |
| IRELAND         | 230        | 1,100    |
| OTHER COUNTRIES | 1,870      | 26,000   |
| TOTAL           | 13,400     | 200,000  |



## **Challenges of** Zinc

- Extraction and processing can produce large amounts of sulphur dioxide (potentially acid rain)
- Significant impacts on water contamination, ٠ particularly heavy metal products out of processing
- Key base for extracting critical subset of minerals ٠ required for clean energy and mobility technologies (e.g. Indium and cadmium)



## Keeping It In Perspective

### If properly governed, managed and operated, particularly at the local level, the overall climate and economic benefits should far outweigh the challenges

- 2015 UNEP <u>report</u>: Green Energy Choices: the Benefits, Risks and Trade-Offs of Low-Carbon Technologies for Electricity Production found "cradle to grave" GHG emissions of clean-energy sources would be 90-99% lower than for coal power
- Significant economic development opportunity for resource-rich developing countries.
  Latin America amongst most 'prolific' area in the world for supplying minerals and metals required for future clean energy technologies







### Thank you!

Daniele La Porta, Sr. Mining Specialist: Dlaporta@worldbank.org

Kirsten Hund, Sr. Mining Specialist: Khund@worldbank.org

Full WB report: The Role of Minerals and Metals for a Low Carbon Future



