Distributing Incomes Between Representative Households In Dynamic CGE Models: Empirical Test of Alternative Structures

Martín Cicowiez, CEDLAS-UNLP Hans Lofgren, World Bank Sherman Robinson, IFPRI

6to. Encuentro Regional Análisis de Políticas Públicas con MEGC Lima, Perú, 7 y 8 de Noviembre 2017

### Introduction

- Dynamic CGE models may have a one or many representative households (RHs).
- If > 1 RH, alternative assumptions may be made regarding changes over time for household shares in population and incomes from factors and other sources.
- Purpose of paper: Review selected approaches and test their impact in a recursive dynamic CGE model.
- The topic is important: Income distribution is a central economic policy issue and the focus of many CGE applications.
- Work in progress.
- Outline
  - Review of approaches
  - CGE application (model, data, simulations)
- Conclusions.

### Review of approaches

- Single RH
  - The challenge of allocating population and incomes across RHs is gone.
  - The CGE model is silent on size distribution although this may be handled via micro simulations.
  - Key question: Are results for household incomes and prices influenced by the disaggregation (or lack thereof) of the household sector.
  - Many examples in the literature.
- Multiple RHs. Alternative approaches to RH income shares:
  - 1. Fixed
  - 2. Scaled by population growth
  - 3. Defined by endogenous RH stock (endowment) and population shares
  - 4. Approach 2 for non-capital and approach 3 for capital
- More on the approaches...

#### More on alternative multiplehousehold approaches

- 1. Fixed base-year RH shares. Factor stocks and RH populations grow at exogenous (and different) rates but RH income shares fixed. This treatment is common (acc. to model documentation).
- Population-growth scaled RH shares (= population-weighted RH per-capita shares). Here tested for the first time. Using s for income share; pop for population; h, h', t, 1, H, and T for household and time set indices and set names; and suppressing the factor subscript:

#### More on alternative multiplehousehold approaches – cont.

$$s_{h,t} = \left(\sum_{h' \in H} s_{h',1}\right) \left( \frac{s_{h,1} \cdot \frac{pop_{h,t}}{pop_{h,1}}}{\sum_{h' \in H} s_{h',1} \cdot \frac{pop_{h',t}}{pop_{h',t}}} \right) = \left(\sum_{h' \in H} s_{h',1}\right) \left( \frac{\frac{s_{h,1}}{pop_{h,1}} \cdot pop_{h,t}}{\sum_{h' \in H} s_{h',1} \cdot \frac{pop_{h',t}}{pop_{h',1}}} \right) \quad h \in H$$

#### More on alternative multiplehousehold approaches – cont.

- 3. Endowment-based RH shares. Population and factor stocks are endogenous. Example: Lofgren et al. (2013). Main features:
  - RHs hold fixed shares in each labor stock. Total stocks for each category may be exogenous or endogenous (education, migration, ...)
  - RH populations scaled on the basis of changes in labor endowments → The "identity" of each RH (pattern of savings, consumption, ...) is determined by labor endowment).
  - RH shares and holdings of non-labor stocks influenced by initial shares, population growth, and investment.

# Approach 3: Factor income shares by RH

 In each year, factor income share parameters are defined on the basis of stock (or endowment) shares:

$$SHIF_{h,f,t} = \frac{QHF_{h,f,t}}{\sum_{i \in I} QHF_{i,f,t}} \quad h \in H, f \in F, t \in T$$
  
share of h in  
income of f = share of h in  
stock of f

#### Approach 3: Computing stocks by RH (in words)

- Steps (recursive over time):
  - a. <u>Labor factors for all years</u>: Stocks allocated across RHs on the basis of base-year labor income shares.
  - b. <u>Population after base year</u>: Population allocated across RHs on the basis of changes in labor stocks subject to total population constraint.
  - c. <u>Non-labor factors for base year</u>: Stocks allocated across RHs on the basis of base-year income shares.
  - <u>Capital after base year (start of year)</u>: Start-of-year stock
     = stock at end of previous year adjusted for population
     growth subject to total capital stock constraint.
  - e. <u>Other factors (not labor or capital) after base year</u>: Stock defined on the basis of initial stock and population growth, subject to total stock constraint.
  - f. More details (in math)...

#### Labor stocks by RH for all years

 Stocks allocated across RHs on the basis of base-year (SAM) labor income shares. (Total stock could be endogenous.)

| $QHF_{h,f,t} = s_h$ | , <i>f</i> ,0 | $\cdot qhf_{total,f,t}$ | h | $e \in H, f$          | $f \in FLAB, t \in f$ | T |
|---------------------|---------------|-------------------------|---|-----------------------|-----------------------|---|
| stock for           |               | share of $h$            |   | total <sup>–</sup>    |                       |   |
| hhd $h$ of          |               | in base-                |   | stock                 |                       |   |
| labor type          |               | year in-                | • | $\operatorname{of} f$ |                       |   |
| f in $t$            |               | come of $f$             |   | in t                  |                       |   |

### Population by RH for all years

 Population allocated across RHs on the basis of changes in labor stocks subject to total population constraint:

$$POP_{h,t} = pop_{h,0} \left( \frac{\sum_{f \in FLAB} qhf_{h,f,t}}{\sum_{f \in FLAB} qhf_{h,f,0}} \right) \cdot \left( \frac{pop_{total,t}}{\sum_{h' \in H} POP_{h,t}} \right) \quad h \in H, t \in T$$

$$\begin{bmatrix} pop'on \\ of h \\ in t \end{bmatrix} = \begin{bmatrix} base- \\ year \\ pop'on \\ of h \end{bmatrix} \cdot \begin{bmatrix} ratio bt. \ labor \\ stock \ for \ h \\ in \ t \ and \\ base-year \end{bmatrix} \cdot \begin{bmatrix} scaling \ to \\ match \\ exogenous \\ pop'on \ total \end{bmatrix}$$

#### Non-labor stocks by RH for base year

c. Stocks allocated across RHs on the basis of base-year income shares (capital, land, ...)

$$QHF_{h,f,0} = s_{h,f,0} \cdot qhf_{total,f,0}$$

$$\begin{bmatrix} \text{stock for} \\ \text{hhd } h \text{ of} \\ \text{factor } f \\ \text{in base year} \end{bmatrix} = \begin{bmatrix} \text{share of } h \\ \text{in base-} \\ \text{year in-} \\ \text{come of } f \end{bmatrix} \cdot \begin{bmatrix} \text{total stock} \\ \text{of } f \text{ in} \\ \text{base year} \end{bmatrix}$$

$$h \in H, f \in F, f \notin FLAB, t = 1$$

#### Capital stocks by RH after base year

 d. Stock (available for use during a year) = stock at end of previous year adjusted for population growth subject to total capital stock constraint:

$$QFHEND_{h,f,t} = (1 - depr_f)QFH_{h,f,t} + DKH_{h,f,t}$$
  

$$\begin{bmatrix} \text{stock for} \\ h \text{ of } f \text{ at} \\ end \text{ of } t \end{bmatrix} = \begin{bmatrix} \text{stock for } h \text{ of } f \\ \text{at start of } t \text{ net} \\ \text{of depreciation} \end{bmatrix} + \begin{bmatrix} \text{investment} \\ \text{by } h \text{ in } f \\ \text{during } t \end{bmatrix}$$
  

$$h \in H, f \in FCAP, t \in T$$

# Capital stocks by RH after base year – cont.

d. -- cont.

$$\begin{aligned} QFH_{h,f,t} &= QFHEND_{h,f,t-1} \left( \frac{POP_{h,t}}{POP_{h,t-1}} \right) \left( \frac{\sum_{h' \in H} QFHEND_{h',f,t-1}}{\sum_{h' \in H} QFH_{h',f,t}} \right) \\ & \left[ \begin{array}{c} \operatorname{stock} \text{ for} \\ h \text{ of } f \text{ during} \\ (\operatorname{at } start \text{ of } ) t \end{array} \right] &= \left[ \begin{array}{c} \operatorname{stock} \text{ for} \\ h \text{ of } f \text{ at} \\ end \text{ of } t-1 \end{array} \right] \cdot \left[ \begin{array}{c} \operatorname{ratio} \text{ bt.} \\ pop'on \\ \text{ of } h \text{ in} \\ t \text{ and } t-1 \end{array} \right] \cdot \left[ \begin{array}{c} \operatorname{scaling} \text{ so that} \\ \operatorname{total} \text{ stocks at} \\ \operatorname{start} \text{ of } t \text{ and end} \\ \operatorname{of } t-1 \text{ are equal} \end{array} \right] \\ h \in H, f \in FCAP, \ t > 1 \end{aligned}$$

# Other factor stocks by RH – after base year

e. Stock (of e.g. land) defined on the basis of initial stock and population growth, subject to total stock constraint:

$$QHF_{h,f,t} = QHF_{h,f,0} \left(\frac{POP_{h,t}}{pop_{h,0}}\right) \left(\frac{qf_{f,t}}{\sum_{h'\in H} QHF_{h',f,t}}\right)$$

$$\begin{bmatrix} \text{stock} \\ \text{for } h \\ \text{of } f \\ \text{in } t \end{bmatrix} = \begin{bmatrix} \text{base-year} \\ \text{stock} \\ \text{for } h \text{ of } f \end{bmatrix} \cdot \begin{bmatrix} \text{ratio bt. pop'on} \\ \text{for } h \text{ in } t \text{ and} \\ \text{base year} \end{bmatrix} \cdot \begin{bmatrix} \text{scaling to} \\ \text{match} \\ \text{exogenous} \\ \text{stock total} \end{bmatrix}$$

 $h \in H, f \in FOTH, t > 1$ 

# CGE application: model, data, and simulations

- Recursive-dynamic CGE model applied to data for Guatemala.
- Analysis tests alternative model structures; not analysis of Guatemala.
- Simulations are done for the period 2011-2030.
- Model and data disaggregation:
  - 8 factors: 2 labor (skilled and unskilled; 2 capital (private and government); 4 natural resources
  - 24 activities and 24 commodities (but not 1-1 mapping)
  - 4 households: rural skilled and unskilled; urban skilled and unskilled
  - Other institutions: government, enterprise, rest of world

# CGE application: model, data, and simulations

- Key model assumptions and features:
  - Endogenous capital stock growth (a function of initial stock, investment and depreciation)
  - For other factors, total factor stock growth is exogenous.
  - Factor markets: rent clearing; wage curve and unemployment for labor
- Simulations:
  - 1. Base
  - 2. World export price increase for agricultural sectors

# CGE application: model, data, and simulations – cont.

- Main outcome indicators: per-capita consumption (aggregate and for each RH), poverty, inequality, and growth rates for disaggregated factor incomes.
- Poverty and inequality indicators generated on the assumption that the distribution within each RH group is unchanged (based on household survey).

# Population growth by RH and approach (%)



# Share of capital income in base by inst and approach



# Change in per capita capital income in base 2030 by RH and approach (%)



Real household per capita consumption growth 2012-2030 by simulation, RH, and approach (%)



# Headcount poverty by approach and simulation in 2030 (pp change wrt base)



### Gini by approach and simulation



### Conclusions

- In multi-RH applications of dynamic CGE models, important to pay attention and be explicit about links between growth in population, factor supplies, and RH – it may matter for welfare, poverty...
- The case for endogenizing RH income shares is compelling if the total population and labor supplies (total and/or disaggregated) are endogenous.
- Planned additional simulations:
  - Government transfers to RHs eliminating a uniform share of the poverty gap for each RH with headcount poverty rate > 0
  - Sensitivity analysis of the results to a more aggregated treatment of factors and households (single household)

#### Income structure by RH in base-year

 $I \cap I$ 

| (%)                       |          |          |          |          |  |  |  |  |  |
|---------------------------|----------|----------|----------|----------|--|--|--|--|--|
|                           | Rural    | Rural sk | Urban    | Urban sk |  |  |  |  |  |
| Income source             | unsk hhd | hhd      | unsk hhd | hhd      |  |  |  |  |  |
| Transfers from government | 4.64     | 0.91     | 2.33     | 0.85     |  |  |  |  |  |
| Transfers from RoW        | 25.37    | 8.46     | 10.17    | 2.92     |  |  |  |  |  |
| Transfers from insdng     | 2.45     | 1.76     | 37.41    | 31.85    |  |  |  |  |  |
| Labor, unskilled          | 62.25    | 4.45     | 32.71    | 1.52     |  |  |  |  |  |
| Labor, skilled            | 4.55     | 83.89    | 6.08     | 53.24    |  |  |  |  |  |
| Capital, private          | 0.70     | 0.50     | 10.64    | 9.06     |  |  |  |  |  |
| Land                      | 0.03     | 0.02     | 0.43     | 0.37     |  |  |  |  |  |
| Forestry res              | 0.00     | 0.00     | 0.01     | 0.01     |  |  |  |  |  |
| Fishing res               | 0.00     | 0.00     | 0.01     | 0.01     |  |  |  |  |  |
| Extractive res            | 0.01     | 0.01     | 0.21     | 0.18     |  |  |  |  |  |
| Total                     | 100.00   | 100.00   | 100.00   | 100.00   |  |  |  |  |  |