

### Partnership for Economic Policy

Martín Cicowiez (CEDLAS-UNLP) Bernard Decaluwé (Université Laval) Mustapha Nabli

www.pep-net.org

#### What is PEP

#### Capacity building for research and policy impact

A global organization to build local capacity in providing contextualized policy solutions

PEP supports high quality and policy-engaged research in developing countries

287 projects & 950 researchers in 61 countries



1/3 projects results in findings taken up to influence policy

1/7 results in peer-reviewed journal publications

1/3 focuses on gender issues



#### PEP objectives and strategy



#### **Research groups** – methods

Community-based monitoring system (CBMS)

Macro-micro policy modeling



Microeconomic analysis & non-experim. impact evaluations

Experimental research - RCTs or field experiments





PEP is funded by:



Canada



International Development Research Centre Centre de recherches pour le développement international

## Policy Optimization with a CGE Model

#### Martín Cicowiez (CEDLAS-UNLP) Bernard Decaluwé (Université Laval) Mustapha Nabli

6to. Encuentro Regional Análisis de Políticas Públicas con MEGC Lima, Perú, 7 y 8 de Noviembre 2017

## Motivation

- Usually, CGE models used for "shock analysis"
  → either exogenous shock(s) or change in policy variable(s) and compute model results.
- However, we can also perform "optimal policy analysis", even for relatively large models
  - specify objective function and compute optimal values for selected policy variables
  - CGE model operates as the constraint of the optimization problem

## **Policy Optimization**

$$\min L = \sum_{i} \phi_i \left( \frac{x_i}{x_i^*} - 1 \right)^2$$

s.t. 
$$F(x, u, z, \mu)$$

#### where

U<sub>j</sub>

 $u_j^*$ 

= loss function

- = policy instruments
- x<sup>\*</sup> = policy objectives (x\* is subset of x)
  - = u<sub>i</sub> in base
- z = vector of exogenous variables
- $\mu$  = vector of parameters

## Literature Review

- Optimal Taxation
  - Böhringer and Rutherford (2002) static multi-country CGE model to determine optimal environmental tax
  - Bovenberg and Goulder (1996) similar analysis for the United States
- Kim (2004) linear CGE model in the context of a stochastic control problem that incorporates the uncertainty about the value of certain parameters of the model.
- André et al. (2012) implement multi-criteria decision making to estimate efficient trade-off between inflation and unemployment rate (Phillips Curve).
- <u>Our Contribution</u>: develop general approach to policy optimization with CGE and provide three possible applications.

## Implementation in PEP-1-1

- To implement the policy optimization approach, we extended the PEP-1-1 CGE model (Decaluwé, Lemelin, Robichaud, Maisonnave, 2013)
  - small open economy CGE model
  - + unemployment through wage curve
- As an example, we show three applications over a dataset for Argentina in 2012
  - Optimal Policy Response to a Negative Shock
  - Optimal Selection of Macro Closure Rule
  - Policy Optimization

## The Argentina Model and Data Disaggregation

- 4 factors: labor, capital, land, other natural resources
- 17 activities and commodities (not 1-1 mapping)
- 1 household
- Other institutions: government and rest of the world

## 1. Optimal Policy Response to a Negative Shock

- Negative Shock : 50% decrease in world export price of agri-food.
- Two objectives :
- Employment level
- Real government deficit
- One policy instrument :
- Government consumption

#### **Optimal Policy Response to a Negative Shock**

$$\min LOSS = wt_{UERAT} \left( \frac{UERAT}{UERAT^*} - 1 \right)^2 + wt_{SG^{REAL}} \left( \frac{SG^{REAL}}{SG^{REAL,*}} - 1 \right)^2$$

#### s.t. all equations in the CGE model

```
With UERAT*=UERATO and SG_REAL*=SG_REALO
```

## Normalization of Policy Objectives

First, solve two single-objective optimization problems to compute pay-off matrix of unemployment vs. real government savings; i.e.,

min 
$$LOSS = wt_{UR} \left( UERAT / UERAT^* - 1 \right)^2$$

s.t. all equations in CGE, 50% decrease in world export price agrifood, gov con as policy instrument

$$\min LOSS = wt_{RGS} \left( SG^{REAL} / SG^{REAL,*} - 1 \right)^2$$

s.t. all equations in CGE, 50% decrease in world export price agrifood, gov con as policy instrument

## Normalization of Policy Objectives: Pay-Off Matrix; Unemployment vs. Real Government Savings

|           | UERAT    | SG_REAL |
|-----------|----------|---------|
| case      | (%)      | (LCU)   |
| base      | 16.50    | 25.7    |
| weights   |          |         |
| UERAT=0   | 18.40    | (25.7)  |
| SG_REAL=1 |          |         |
| weights   | $\frown$ |         |
| UERAT=1   | (16.50   | -123.0  |
| SG_REAL=0 |          |         |

## Normalization of the Loss function

We start with

$$\min LOSS = wt_{UERAT} \left(\frac{UERAT}{UERAT^*} - 1\right)^2 + wt_{SG^{REAL}} \left(\frac{SG^{REAL}}{SG^{REAL,*}} - 1\right)^2$$

To get

 $\min LOSS = wt_{UERAT} \left( \frac{UERAT - UERAT_{\min}}{UERAT_{\max} - UERAT_{\min}} \right)^{2} + wt_{SG^{REAL}} \left( \frac{SG^{REAL} - SG^{REAL}_{\min}}{SG^{REAL} - SG^{REAL}_{\min}} \right)^{2}$ 

NON optimal Policy Response to a 50% decrease in world export price of agri-food

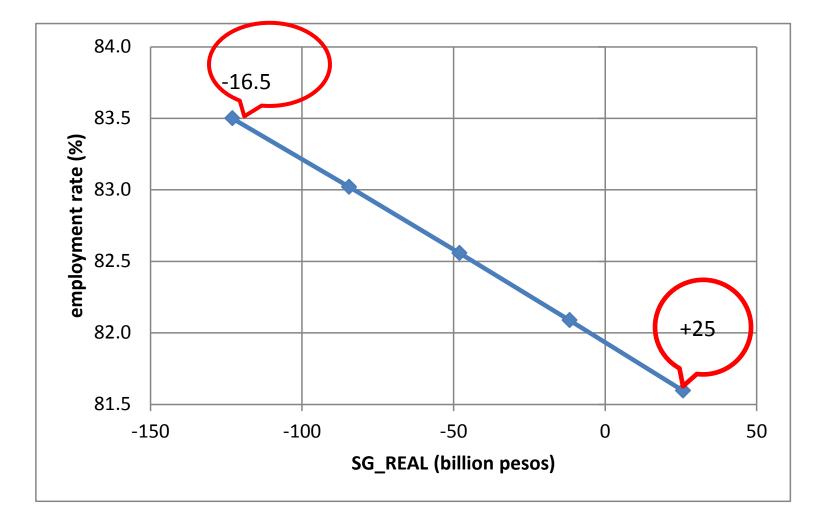
- Closure rules :
  - Real government expenditure is fixed
  - Current account balance in FCU is fixed
  - Investment is saving driven
  - The real exchange rate adjust to clear the Current account balance.

#### NON optimal Policy Response to a 50% decrease in world export price of agri-food

|                            |         |         | weights in loss f | weights in loss fn |           |  |  |  |
|----------------------------|---------|---------|-------------------|--------------------|-----------|--|--|--|
|                            |         | non-    | UERAT=0           | UERAT=0.5          | UERAT=1   |  |  |  |
|                            | base    | opt     | SG_REAL=1         | SG_REAL=0.5        | SG_REAL=0 |  |  |  |
| Item                       | (1)     | (2)     | (3)               | (4)                | (5)       |  |  |  |
| Private consumption        | 1,829.3 | 1,786.6 | 1,781.1           | 1,791.7            | 1,803.0   |  |  |  |
| Private investment         | 473.5   | 415.9   | 449.2             | 387.3              | 326.2     |  |  |  |
| Government consumption     | 417.1   | 417.1   | 382.6             | 446.0              | 505.0     |  |  |  |
| Exports                    | 428.1   | 375.8   | 381.4             | 371.0              | 361.0     |  |  |  |
| Imports                    | 379.3   | 314.5   | 319.7             | 310.1              | 301.0     |  |  |  |
| GDP at factor cost         | 2,371.8 | 2,345.2 | 2,337.0           | 2,351.7            | 2,364.0   |  |  |  |
| Real governement savings   | 25.7    | -13.7   | 25.7              | -48.0              | -123.0    |  |  |  |
| Current account balance    | -11.30  | -11.30  | -11.30            | -11.30             | -11.30    |  |  |  |
| Real exchange rate (index) | 1.000   | 1.012   | 1.017             | 1.008              | 0.999     |  |  |  |
| Unemployment rate (%)      | 16.50   | 17.89   | 18.40             | 17.44              | 16.50     |  |  |  |
| Loss                       | 0.000   | 0.000   | 0.000             | 0.245              | 0.000     |  |  |  |

#### NON optimal Policy Response to a 50% decrease in world export price of agri-food

|                            |         | non-    | UERAT=0   | UERAT=0.5   | UERAT=1   |
|----------------------------|---------|---------|-----------|-------------|-----------|
|                            | base    | opt     | SG_REAL=1 | SG_REAL=0.5 | SG_REAL=0 |
| Item                       | (1)     | (2)     | (3)       | (4)         | (5)       |
| Private consumption        | 1.829.3 | 1.786.6 | 1,781.1   | 1,791.7     | 1,803.0   |
| Private investment         | 473.5   | 415.9   | 449.2     | 387.3       | 326.2     |
| Government consumption     | 417.1   | 417.1   | 382.6     | 446.0       | 505.0     |
| Exports                    | 428.1   | 375.8   | 381.4     | 371.0       | 361.0     |
| Imports                    | 379.3   | 314 5   | 319.7     | 310.1       | 301.0     |
| GDP at factor cost         | 2,371.8 | 2,345.2 | 2,337.0   | 2,351.7     | 2,364.0   |
| Real governement savings   | 25.7    | -13.7   | 25.7      | -48.0       | -123.0    |
| Current account balance    | -11.30  | -11.30  | -11.30    | -11.30      | -11.30    |
| Real exchange rate (index) | 1.000   | 1.012   | 1.017     | 1.008       | 0.999     |
| Unemployment rate (%)      | 16.50   | 17.89   | 18.40     | 17.44       | 16.50     |
| Loss                       | 0.000   | 0.000   | 0.000     | 0.245       | 0.000     |


## Optimal Policy Response to a 50% decrease in world export price of agri-food

|                            |         |         | weights in loss f |             |           |
|----------------------------|---------|---------|-------------------|-------------|-----------|
|                            |         | non-    | UERAT=0           | UERAT=0.5   | UERAT=1   |
|                            | base    | opt     | SG_REAL=1         | SG_REAL=0.5 | SG_REAL=0 |
| ltem                       | (1)     | (2)     | (3)               | (4)         | (5)       |
| Private consumption        | 1,829.3 | 1,786.6 | 1,781.1           | 1,791.7     | 1,803.0   |
| Private investment         | 473.5   | 415.9   | 449.2             | 387.3       | 326.2     |
| Government consumption     | 417.1   | 417.1   | 382.6             | 446.0       | 505.0     |
| Exports                    | 428.1   | 375.8   | 381.4             | 371.0       | 361.0     |
| Imports                    | 379.3   | 314.5   | 319.7             | 310.1       | 301.0     |
| GDP at factor cost         | 2,371.8 | 2,345.2 | 2,337.0           | 2,351.7     | 2,364.0   |
| Real governement savings   | 25.7    | -13.7   | 25.7              | -48.0       | -123.0    |
| Current account balance    | -11.30  | -11.30  | -11.30            | -11.30      | -11.30    |
| Real exchange rate (index) | 1.000   | 1.012   | 1.017             | 1.008       | 0.999     |
| Unemployment rate (%)      | 16.50   | 17.89   | 18.40             | 17.44       | 16.50     |
| Loss                       | 0.000   | 0.000   | 0.000             | 0.245       | 0.000     |

## Optimal Policy Response to a 50% decrease in world export price of agri-food

|                            |         |         | weights in loss f |             |           |
|----------------------------|---------|---------|-------------------|-------------|-----------|
|                            |         | non-    | UERAT=0           | UERAT=0.5   | UERAT=1   |
|                            | base    | opt     | SG_REAL=1         | SG_REAL=0.5 | SG_REAL=0 |
| ltem                       | (1)     | (2)     | (3)               | (4)         | (5)       |
| Private consumption        | 1,829.3 | 1,786.6 | 1,781.1           | 1,791.7     | 1,803.0   |
| Private investment         | 473.5   | 415.9   | 449.2             | 387.3       | 326.2     |
| Government consumption     | 417.1   | 417.1   | 382.6             | 446.0       | 505.0     |
| Exports                    | 428.1   | 375.8   | 381.4             | 371.0       | 361.0     |
| Imports                    | 379.3   | 314.5   | 319.7             | 310.1       | 301.0     |
| GDP at factor cost         | 2,371.8 | 2,345.2 | 2,337.0           | 2,351.7     | 2,364.0   |
| Real governement savings   | 25.7    | -13.7   | 25.7              | -48.0       | -123.0    |
| Current account balance    | -11.30  | -11.30  | -11.30            | -11.30      | -11.30    |
| Real exchange rate (index) | 1.000   | 1.012   | 1.017             | 1.008       | 0.999     |
| Unemployment rate (%)      | 16.50   | 17.89   | 18.40             | 17.44       | 16.50     |
| Loss                       | 0.000   | 0.000   | 0.000             | 0.245       | 0.000     |

## Optimal Policy Response to a Negative Shock; trade-off between employment and government savings



2. Optimal selection of Macro closure rule : Trade liberalisation

- The scenario : Elimination of all tariff.
- Two objectives :
- Gross Fixed Capital Formation GFCF
- Current Account Balance
- One policy instrument :
- Foreign versus domestic financing of the goverment deficit.

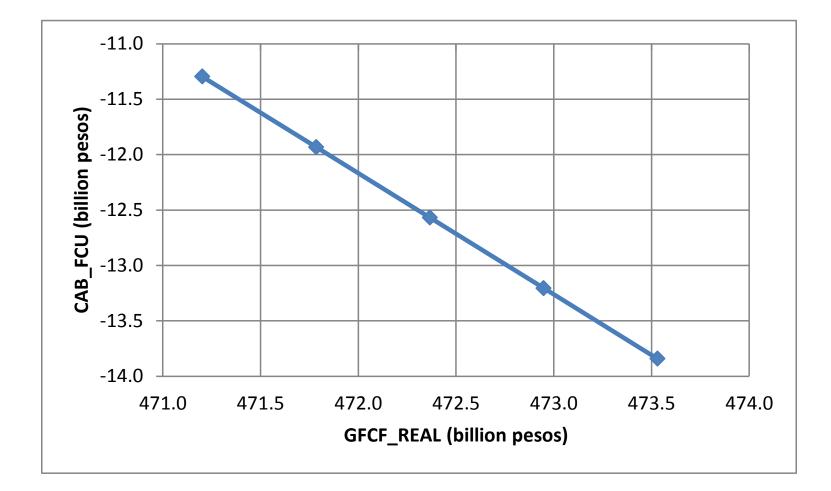
NON optimal selection of Macro closure : trade liberalisation

- Closure rules :
  - Real Government consumption is fixed
  - Current account balance is fixed
  - Investment is saving driven
  - Real exchange rate is endogeneous.

## NON optimal Selection of Macro Closure :Trade liberalisation

|                            |         |         | weights     |               |             |
|----------------------------|---------|---------|-------------|---------------|-------------|
|                            |         |         | CAB_FCU=0   | CAB_FCU=0.5   | CAB_FCU=1   |
|                            | base    | non-opt | GFCF_REAL=1 | GFCF_REAL=0.5 | GFCF_REAL=0 |
| Item                       | (1)     | (2)     | (3)         | (5)           | (7)         |
| Private consumption        | 1,829.3 | 1,841.2 | 1,841.7     | 1,841.4       | 1,841.2     |
| Private investment         | 473.5   | 471.2   | 473.5       | 472.4         | 471.2       |
| Government consumption     | 417.1   | 417.1   | 417.1       | 417.1         | 417.1       |
| Exports                    | 428.1   | 440.4   | 439.1       | 439.8         | 440.4       |
| Imports                    | 379.3   | 391.8   | 392.9       | 392.3         | 391.8       |
| GDP at factor cost         | 2,371.8 | 2,378.2 | 2,378.6     | 2,378.4       | 2,378.2     |
| Real governement savings   | 25.7    | 14.7    | 14.6        | 14.6          | 14.7        |
| Current account balance    | -11.3   | -11.3   | -13.8       | -12.6         | -11.3       |
| Real exchange rate (index) | 1.0     | 1.0     | 1.0         | 1.0           | 1.0         |
| Unemployment rate (%)      | 16.5    | 16.1    | 16.1        | 16.1          | 16.1        |
| Loss                       | 0.0     | 0.0     | 0.0         | 0.2           | 0.0         |

## 2. Optimal Selection of Macro Closure Rule


$$\min LOSS = wt_{GFCF^{REAL}} \left( \frac{GFCF^{REAL} - GFCF_{\min}^{REAL}}{GFCF_{\max}^{REAL} - GFCF_{\min}^{REAL}} \right)^{2}$$
$$+wt_{CAB^{FCU}} \left( \frac{CAB^{FCU} - CAB_{\min}^{FCU}}{CAB_{\max}^{FCU} - CAB_{\min}^{FCU}} \right)^{2}$$

s.t. all equations in the CGE model

## Optimal Selection of Macro Closure Rule

|                            |         |         | weights     |               |             |
|----------------------------|---------|---------|-------------|---------------|-------------|
|                            |         |         | CAB_FCU=0   | CAB_FCU=0.5   | CAB_FCU=1   |
|                            | base    | non-opt | GFCF_REAL=1 | GFCF_REAL=0.5 | GFCF_REAL=0 |
| Item                       | (1)     | (2)     | (3)         | (5)           | (7)         |
| Private consumption        | 1,829.3 | 1,841.2 | 1,841.7     | 1,841.4       | 1,841.2     |
| Private investment         | 473.5   | 471.2   | 473.5       | 472.4         | 471.2       |
| Government consumption     | 417.1   | 417.1   | 417.1       | 417.1         | 417.1       |
| Exports                    | 428.1   | 440.4   | 439.1       | 439.8         | 440.4       |
| Imports                    | 379.3   | 391.8   | 392.9       | 392.3         | 391.8       |
| GDP at factor cost         | 2,371.8 | 2,378.2 | 2,378.6     | 2,378.4       | 2,378.2     |
| Real governement savings   | 25.7    | 14.7    | 14.6        | 14.6          | 14.7        |
| Current account balance    | -11.3   | -11.3   | -13.8       | -12.6         | -11.3       |
| Real exchange rate (index) | 1.0     | 1.0     | 1.0         | 1.0           | 1.0         |
| Unemployment rate (%)      | 16.5    | 16.1    | 16.1        | 16.1          | 16.1        |
| Loss                       | 0.0     | 0.0     | 0.0         | 0.2           | 0.0         |

## Optimal Selection of Macro Closure Rule; trade-off between GFCF and CAB

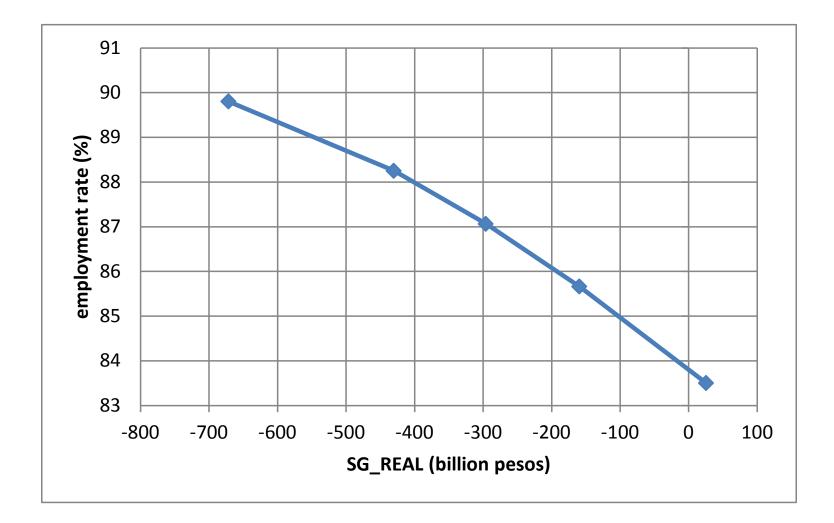


## 3. Policy Optimization : Minimize unemployment rate

$$\min LOSS = wt_{UERAT} \left(\frac{UERAT}{UERAT^*} - 1\right)^2 + wt_{SG^{REAL}} \left(\frac{SG^{REAL}}{SG^{REAL,*}} - 1\right)^2$$

s.t. all equations in the CGE model

Policy instrument **:government consumption** Objective : **minimize unemployment rate** UERAT\*=8.25 % reduce the unemployment rate to 8.25 % (a reduction of 50% with respect to the base year).


## Policy Optimization; minimize unemployment rate

|                            |         | weights in loss f |             |           |
|----------------------------|---------|-------------------|-------------|-----------|
|                            |         | UERAT=0           | UERAT=0.5   | UERAT=1   |
|                            | base    | SG_REAL=1         | SG_REAL=0.5 | SG_REAL=0 |
| Item                       | (1)     | (2)               | (3)         | (4)       |
| Private consumption        | 1,829.3 | 1,829.3           | 1,877.7     | 1,930.1   |
| Private investment         | 473.5   | 473.5             | 218.4       | 0.0       |
| Government consumption     | 417.1   | 417.1             | 642.7       | 783.5     |
| Exports                    | 428.1   | 428.1             | 386.9       | 358.0     |
| Imports                    | 379.3   | 379.3             | 338.6       | 309.3     |
| GDP at factor cost         | 2,371.8 | 2,371.8           | 2,411.2     | 2,407.9   |
| Real governement savings   | 25.7    | 25.7              | -295.7      | -671.1    |
| Current account balance    | -11.30  | -11.30            | -11.30      | -11.30    |
| Real exchange rate (index) | 1.000   | 1.000             | 0.970       | 0.957     |
| Unemployment rate (%)      | 16.50   | 16.50             | 12.94       | 10.20     |
| Loss                       | 0.0     | 0.00              | 0.20        | 0.00      |

## **Concluding Remarks**

- In this paper, we have embedded a computable general equilibrium model within a programming problem for policy simulation
  - policy design is seen as a decision problem with multiple conflicting objectives
- Certainly, we could have selected more than one policy instrument in each simulation
  - for example, taxes could also be optimally selected
  - can restrict the tax rates to vary by less than 5% with respect to their benchmark values

# Policy Optimization; trade-off between employment and government savings



## **Concluding Remarks**

- Next, we plan to
  - (a) apply the approach to a relevant policy issue in Argentina and/or elsewhere, and
  - (b) implement dynamic version of the approach, over a recursive dynamic CGE model and assuming that the government is a forwardlooking agent.

## **Additional Slides**

### Macro SAM Argentina 2012

|         | /               | /     | /    | /      | /     | à.       | an       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 48      |       |          | /          |      |                   | /                |       |                    |      | /     |
|---------|-----------------|-------|------|--------|-------|----------|----------|-----------------------------------------|---------|-------|----------|------------|------|-------------------|------------------|-------|--------------------|------|-------|
|         | ∕ <sup>₂č</sup> | في خ  | n in | »» 4.c | 39 10 | + vat ta | r com ta | ill xo                                  | ferr es | oc xã | t dir nr | <i>b</i> 5 | × 65 | 5 <sup>4</sup> (Ö | <sup>50</sup> 53 | 'n. 4 | 11 <sup>8</sup> in |      | St vi |
| act     |                 | 159.2 |      |        |       |          |          |                                         |         |       |          |            |      |                   |                  |       |                    |      | 159.2 |
| com     | 73.4            |       |      |        |       |          |          |                                         |         |       | 66.1     |            | 15.1 | 15.5              |                  | 14.8  | 2.3                | -0.1 | 187.1 |
| f-lab   | 47.1            |       |      |        |       |          |          |                                         |         |       |          |            |      | 0.0               |                  |       |                    |      | 47.1  |
| f-cap   | 38.7            |       |      |        |       |          |          |                                         |         |       |          |            |      | 0.4               |                  |       |                    |      | 39.1  |
| tax-vat |                 | 6.9   |      |        |       |          |          |                                         |         |       |          |            |      |                   |                  |       |                    |      | 6.9   |
| tax-com |                 | 4.5   |      |        |       |          |          |                                         |         |       |          |            |      |                   |                  |       |                    |      | 4.5   |
| tax-imp |                 | 0.6   |      |        |       |          |          |                                         |         |       |          |            |      |                   |                  |       |                    |      | 0.6   |
| tax-exp |                 | 2.2   |      |        |       |          |          |                                         |         |       |          |            |      |                   |                  |       |                    |      | 2.2   |
| cssoc   |                 |       | 6.5  |        |       |          |          |                                         |         |       |          |            |      |                   |                  |       |                    |      | 6.5   |
| tax-dir |                 |       |      |        |       |          |          |                                         |         |       | 3.1      | 5.0        |      |                   |                  |       |                    |      | 8.1   |
| hhd     |                 |       | 40.6 |        |       |          |          |                                         |         |       |          | 20.8       | 15.3 | 0.1               |                  |       |                    |      | 76.8  |
| ent     |                 |       |      | 35.4   |       |          |          |                                         |         |       |          |            | 0.2  | 0.1               |                  |       |                    |      | 35.7  |
| gov     |                 |       |      | 1.2    | 6.9   | 4.5      | 0.6      | 2.2                                     | 6.5     | 8.1   | 1.3      |            |      | 0.3               |                  |       |                    |      | 31.6  |
| row     |                 | 13.7  | 0.0  | 2.5    |       |          |          |                                         |         |       | 0.2      | 0.3        | 0.0  |                   |                  |       |                    |      | 16.8  |
| sav     |                 |       |      |        |       |          |          |                                         |         |       | 6.1      | 9.6        | 0.9  | 0.4               |                  |       |                    |      | 17.0  |
| invng   |                 |       |      |        |       |          |          |                                         |         |       |          |            |      |                   | 14.8             |       |                    |      | 14.8  |
| invg    |                 |       |      |        |       |          |          |                                         |         |       |          |            |      |                   | 2.3              |       |                    |      | 2.3   |
| dstk    |                 |       | 0.0  |        |       |          |          |                                         |         |       |          |            |      |                   | -0.1             |       |                    |      | -0.1  |
| total   | 159.2           | 187.1 | 47.1 | 39.1   | 6.9   | 4.5      | 0.6      | 2.2                                     | 6.5     | 8.1   | 76.8     | 35.7       | 31.6 | 16.8              | 17.0             | 14.8  | 2.3                | -0.1 |       |

## **Factor Intensities**

| Sector                       | Labor | Capital | Land | Total |
|------------------------------|-------|---------|------|-------|
| Agriculture, forest and fish | 31.6  | 32.9    | 35.5 | 100.0 |
| Other mining                 | 21.1  | 78.8    | 0.0  | 99.9  |
| Petroleum and gas            | 21.1  | 78.8    | 0.0  | 99.9  |
| Food                         | 45.0  | 48.4    | 0.0  | 93.4  |
| Textiles and apparel         | 45.0  | 48.4    | 0.0  | 93.4  |
| Petroleum products           | 45.0  | 48.4    | 0.0  | 93.4  |
| Chemicals, rubber and plast  | 45.0  | 48.4    | 0.0  | 93.4  |
| Metals, mach and equip       | 45.0  | 48.4    | 0.0  | 93.4  |
| Vehicles                     | 45.0  | 48.4    | 0.0  | 93.4  |
| Other manufacturing          | 45.0  | 48.4    | 0.0  | 93.4  |
| Elect, gas and water         | 26.4  | 73.6    | 0.0  | 100.0 |
| Construction                 | 42.1  | 45.7    | 0.0  | 87.7  |
| Trade                        | 43.2  | 42.5    | 0.0  | 85.7  |
| Transport and comm           | 56.4  | 38.4    | 0.0  | 94.8  |
| Other services               | 41.0  | 53.2    | 0.0  | 94.2  |
| Public administration        | 100.0 | 0.0     | 0.0  | 100.0 |
| Education and health         | 69.6  | 26.5    | 0.0  | 96.0  |
| Total                        | 48.8  | 42.7    | 2.4  | 93.9  |