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Abstract Wave climate characterization at different time scales (long-term historical periods, seasonal
prediction, and future projections) is required for a broad number of marine activities. Wave reanalysis data-
bases have become a valuable source of information covering time periods of decades. A weather-type
approach is proposed to statistically downscale multivariate wave climate over different time scales from
the reanalysis long-term period. The model calibration is performed using historical data of predictor (sea
level pressure) and predictand (sea-state parameters) from reanalysis databases. The storm activity responsi-
ble for the predominant swell composition of the local wave climate is included in the predictor definition.
N-days sea level pressure fields are used as predictor. K-means algorithm with a postorganization in a bidi-
mensional lattice is used to obtain weather patterns. Multivariate hourly sea states are associated with each
pattern. The model is applied at two locations on the east coast of the North Atlantic Ocean. The validation
proves the model skill to reproduce the seasonal and interannual variability of monthly sea-state parame-
ters. Moreover, the projection of wave climate onto weather types provides a multivariate wave climate
characterization with a physically interpretable linkage with atmospheric forcings. The statistical model is
applied to reconstruct wave climate in the last twentieth century, to hindcast the last winter, and to project
wave climate under climate change scenarios. The statistical approach has been demonstrated to be a use-
ful tool to analyze wave climate at different time scales.

1. Introduction

Accurate characterization of local wave climate is required in series of sectors such as shipping, offshore
industry, marine engineering, and coastal management. Wave climate variability plays a significant role in
numerous geophysical processes. Operations of marine carriers, logistics of marine structures, coastal ero-
sion, or flooding risk are some examples where multivariate behavior of waves is essential. Wave climate is
traditionally characterized from two sources: observations (buoys, satellites, and voluntary observing ship
(VOS) data) and outcomes from numerical models (dynamical downscaling). Buoys provide the most reliable
data; however, their records are usually not longer than 20 years, have notable gaps, and are very scattered
at sea. Satellite observations present a global coverage, but this source of data is only available since 1992
with a nonregular time resolution. VOS data provide the longest records of independent sea and swell
parameters [Gulev and Grigorieva, 2006] and reliable climate variability and trends with less inhomogeneities
than wave hindcast [Gulev et al., 2003]. However, their sampling is insufficient and they require correction
algorithms. The dynamical downscaling outputs are a good alternative to observations, but they require a
high-quality bathymetry and wind fields and are computationally expensive.

When atmospheric data are available, an alternative to dynamical downscaling is the statistical downscaling.
The statistical downscaling (SD) method typically adopts a ‘‘perfect prognosis’’ approach, in which high-
resolution simulations of the variables of interest are based on real-world statistical relationships between
large-scale atmospheric predictors and a local-scale predictand. The main advantage of the statistical
approach is that it is computationally inexpensive; therefore, it is suitable for a faster predictand characteri-
zation, to get long-term simulations, or to develop multiple realizations from different forcing conditions
(i.e., outputs from climate change scenarios). Some assumptions are inherent in the perfect prognosis down-
scaling approach: (i) variability of the local variable should be explained by the statistical connection, (ii)
changes in the mean climate should lie within the range of its natural variability, and (iii) the relationships
should be stationary. Long observation time series, physical explanation of the relation between the
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large-scale predictor and the local predictand, and reliable predictor simulations by Global Circulation Mod-
els (GCMs) fulfill these conditions [Wilby et al., 2004].

Different approaches can be applied to develop a SD model. Giorgi et al. [2001] classified the methods into:
(i) transfer functions, (ii) weather-type approaches, and (iii) stochastic weather generators. The performance
of the SD techniques can be found in a high number of works for different regions using a broad range of
predictands. For example, Guti�errez et al. [2013] compare the performances of different SD methods (from
the analog, weather typing, and regression families) for downscaling temperatures in Spain. Each method
has its own strengths and weaknesses, reproducing certain local weather statistical characteristics with
more or less accuracy, being difficult to select one against the other, always depending on each particular
case. Other relevant aspects which determine the skill of the SD method are the predictor choice, regarding
variables and the spatial domain [Fowler et al., 2007]. In the case of sea surface waves, sea level pressure
(SLP) fields and the squared SLP gradient fields have demonstrated to be good predictors [Wang et al.,
2012; Casas-Prat et al., 2014]. This is especially relevant for applications of climate projections, since the SLP
variable is supposed to be less biased than wind fields from GCMs [Caires et al., 2006].

The SD applications to analyze wave climate are usually limited to climate projections of the significant wave
height (Hs), a parameter of the sea state. Most of the developed works are based on multivariate linear regression
models between the SLP predictor and the Hs at seasonal or hourly scale [Wang et al., 2012; Wang and Swail,
2006; Wang et al., 2004; Casas-Prat et al., 2014] or extreme models, modeling the interannual variability using
covariates defined by the SLP predictors [Wang et al., 2004; Wang and Swail, 2006; Caires et al., 2006; Izaguirre
et al., 2010]. However, Hs is not the only variable of concern to deal with wave climate processes. Other sea-state
parameters (e.g., peak period and mean wave direction) are required to analyze climate change effects in coastal
structures [Suh et al., 2012] or wave energy resources [Hemer et al., 2010]. For example, wave direction is particu-
larly critical for calculating littoral drift and associated estimates of sand budgets to determine coastal erosion.

In this work, an SD framework based on weather types is presented. Statistical models find difficult to repro-
duce waves in swell-dominated areas [Hemer et al., 2012]. To overcome this problem, the recent history of
atmospheric conditions responsible for the swell component in the study area is going to be introduced in
the predictor definition. A statistical relationship between the weather types and the whole probability dis-
tribution of multivariate local wave climate is established. The SD model is applied in two locations in the
North Atlantic Ocean, in the Irish and the Spanish coasts. For these locations, the SD model is validated and
some applications are shown: a local wave climate characterization, a long-term historical reconstruction,
an update of a wave hindcast database, and the simulation of wave climate projections.

The paper is structured as follows. Section 2 presents the statistical downscaling framework proposed. Sec-
tion 3 shows the application of the method to a particular case study. This section includes the definition of
the predictor and predictand, the application of the weather classification technique, the description of the
relationship between the synoptic patterns and the local wave climate, and the results of the validation
period. Section 4 presents several applications of the statistical downscaling method including the charac-
terization, hindcast, and projection of wave climate. Section 5 contains the summary and conclusions.

2. The Statistical Downscaling Method

Regarding wave climate, the aim of a statistical downscaling method is to estimate local waves (predictand)
from global atmospheric conditions (predictor), based on a statistical relation. A weather typing method is
proposed in this study. The flowchart summarizing the statistical method is shown in Figure 1. The steps of
the methodology are: (1) collection of historical data for the predictor and predictand; (2) definition of the
predictor at daily scale; (3) classification of predictor conditions in a reduced number of weather types; (4)
establishing the relationship between predictor and predictand; (5) validation of the statistical model.

First, historical data of both atmospheric predictor and wave climate predictand are required to define the
statistical model between predictand and predictor.

Regarding the predictor definition on a daily scale, the variables are the SLP and the squared SLP gradients.
The spatial domain and temporal coverage of the predictor should be specified for each location where
waves are downscaled. Spatial domain should cover the oceanic basin area of wave generation reaching
that particular location. Recent historical atmospheric conditions should be included in the predictor in
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order to take into account the generation and propagation processes of the waves reaching a specific
location.

In the third step, the SLP predictor database is partitioned into a certain number of clusters, named weather
types (WTs), applying a classification technique. Each WT represents a synoptic atmospheric circulation
pattern.

WT classification is obtained combining three data mining techniques: first, a principal component analysis
(PCA) is applied to the predictor variable in order to reduce the data dimensionality and simplify the classifi-
cation process. Second, the predictor in the EOFs space is clustered using k-means algorithm (KMA). Finally,
the set of WTs is organized using a similarity criterion.

PCA projects the original data on a new space searching for the maximum variance of the sample data. The
eigenvectors (empirical orthogonal functions, EOFs) of the data covariance matrix define the vectors of the
new space. The original data projections over the new vectors are the Principal Components (PCs). The
EOFs are ranked in increasing order of explained variance. Therefore, a smaller number of PCs than the orig-
inal data dimension is considered, keeping a high amount of variance. The KMA divides the data space into
a number of clusters, each one defined by a prototype and formed by the data for which the prototype is
the closest [Hastie et al., 2001]. The maximum-dissimilarity algorithm (MDA) is applied to initiate the proto-
types, which guarantees a deterministic classification and the most representative initial subset.

The clusters are organized in a bidimensional lattice, which allows an intuitive visualization of the classifica-
tion. The algorithm, based on a similarity criterion, starts locating the clusters into a bidimensional lattice.
The distance between each cluster WTi and its closest neighbors in the lattice are calculated. Permutations
of the cluster locations in the lattice are performed, calculating the sum of the distances in each permuta-
tion. The best organized lattice is the one with the minimum sum of distance [Bermejo and Ancell, 2009].
Results are almost similar to the selforganizing maps due to the fact that similar patterns in the original
space are close in the lattice, with the advantage of a better exploration of the data space, strengthened by
an MDA initialization [Camus et al., 2011].

Figure 1. Flowchart representing the statistical downscaling methodology.
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The fourth step consists of defining the statistical relationship between the predictor and predictand. The
predictand is defined as the sea-state parameters at the location of interest. The sea states are associated
with each cluster (hourly sea states during each daily predictor field represented by the corresponding clus-
ter), allowing a nonlinear relationship. The probability distributions of different variables fi(y), such as the
univariate distribution of the Hs parameter or the joint distribution of Hs and mean period (Tm), are calcu-
lated for each WTi. This statistical relation is established for a calibration period. Although in the state of the
art the statistical downscaling methods are sometimes calibrated separately for each season, in our
approach, the classification process is performed for the whole calibration period due to the fact that future
seasonal climates might not exactly correspond to the present ones [Maraun et al., 2010].

Hence, the marginal and joint distributions (empirical probability density functions) of the sea-state parame-
ters and any derived statistic can be estimated for the whole calibration time period as follows:

f ðyÞ5
XM

i51

pi � fiðyÞ; (1)

where pi is the probability of WTi. The probability of occurrence (pi) of a WTi is estimated from the number
of daily atmospheric predictor situations represented by each WTi, so that

XM

i51
pi 51, where M is the

number of weather types.

The estimation of the sea-state parameters for a time period outside the calibration period is based on the
new probabilities of the WTs from the SLP predictor. The sea-state distributions for a new time period can
be estimated as:

f ’ðyÞ5
XM

i51

p’
i � fiðyÞ; (2)

being p
0
i the probability of WTs for the new time period.

The final step of the definition of the statistical downscaling model is the validation. Monthly sea-state
parameters are calculated based on the distribution of sea states associated with each WTi and the proba-
bilities of the WTs for the validation period.

3. Case Study

The SD model is applied in the North Atlantic region at two locations by establishing a statistical relation-
ship between large-scale atmospheric circulation patterns and the probability distributions of several
parameters of the sea states.

3.1. Data
3.1.1. Predictor
The global SLP fields of the NCEP/NCAR reanalysis-I [Kalnay et al., 1996], from the National Center for Envi-
ronmental Prediction-National Center for Atmospheric Research, are used as the predictor in the SD model.
This atmospheric reanalysis spans from 1948 to present. Multiple instrumental measurements were inte-
grated in an assimilation process. Inhomogeneities were found to be caused by changes in the observing
system. NCEP/NCAR reanalysis is less reliable during the earliest decade (1948–1957), due to fewer upper-
air data observations [Kistler et al., 2001]. After 1957, data coverage in the North Hemisphere was large
enough to effectively constrain the model and avoid large inhomogeneities. However, homogeneity in the
Southern Hemisphere can only be assumed after 1980 due to low data coverage [Sterl, 2004]. Therefore,
data from 1960 to 2013 are used in this work. The used SLP data from NCEP-NCAR reanalysis-I consist of 6
hourly fields on a 2.5� by 2.5� long-lat global grid.

3.1.2. Predictand
Historical data of the local wave climate predictand are required in the SD model. The historical wave infor-
mation used in this work is the ocean wave reanalysis database Global Ocean Waves (GOW) [Reguero et al.,
2012]. GOW has been generated with the third generation model WaveWatch III, which solves the spectral
action density balance equation for wave number direction spectra using finite differences [Tolman, 2009].
GOW encompasses several spatial domains, a global grid with a spatial resolution of 1.5� by 1�, forced by
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the 6 hourly wind fields of NCEP-NCAR reanalysis-I (more details in Reguero et al. [2012]) and several nested
regional domains around (e.g., Pacific and Atlantic American regions described in Izaguirre et al. [2013]).
Here we use waves from a GOW regional simulation over the European Atlantic area. The regional spatial
domain spans from 27.25�N to 57.25�N and 20�W to 37�E, with a resolution of 0.25�. The European Atlantic
domain is forced with wind fields from SeaWind I, a dynamic atmospheric downscaling from NCEP-NCAR
reanalysis-I [Menendez et al., 2013]. Outputs provide hourly sea-state parameters (significant wave height,
mean period, peak period, and mean wave direction) from 1948 to 2013.

Figure 2 shows the two selected study sites in the east of the North Atlantic basin: a location westward of
Ireland (IR, lon 5 11.25�W, lat 5 53.25�N) and a site in the northwest coast of Spain (GA, lon 5 9.25�W,
lat 5 43.5�N). GOW series of wave parameters in both sites have been compared against in situ observations
in order to validate the data. Time series of hourly wave observations were obtained from the Irish Marine
Buoy Network and the Spanish State Ports network. The Spanish 2246 buoy was moored in 1998 about
40 km west of A Coru~na coast, at latitude 43.5�N and longitude 9.21�W. The Irish buoy M1 was deployed in
2000 about 95 km west of the Aran Islands, 53�07.60N and 11�12.00W. Figure 3 shows the validation process.
The plots on the left show the scatterplot of buoy measurements and numerical results and the plots on
the right show the buoy and GOW Hs hourly time series. Both tests demonstrate good agreement between
the numerical data and observations, with a correlation higher than 0.9 and a low bias (0.014 and 0.354 m
for the Spanish and Irish buoys, respectively). Buoy records can be used as input in the SD model. It should
be noted, however, that long records and observations without gaps during specific seasons are recom-
mended for a good statistical relationship between atmospheric patterns and local wave climate.

3.2. Predictor Definition
The wave climate along the European Atlantic coast is mainly influenced by extratropical storms generated
in the north and northwest of the Atlantic basin with a mean duration and an arriving time to the east
Atlantic coast of about 4 days [Gulev et al., 2001]. Figure 2 shows the area selected in the North Atlantic
basin as the predictor spatial domain, from 25�N to 70�N and from 52.5�W to 10�E. The selected domain
covers the storm activity in the North Atlantic Ocean which is the source of swell wave component on the
northwest coast of Europe [Alves, 2006]. The predictor variables used in the statistical model are the SLP

Figure 2. Selected spatial domain of SLP predictor (only black grid points are considered). Red circles show the locations of the analyzed
predictand (local wave climate).

Journal of Geophysical Research: Oceans 10.1002/2014JC010141

CAMUS ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 5



fields and the squared SLP gradients (SLPG), which represent the geostrophic wind conditions. The land
grid points of the selected domain are disregarded, avoiding the strong variability mode of SLPG over
Greenland and other onshore regions. The predictor is defined as the three daily mean SLP and three daily
mean SLPG, calculated every day through the calibration time period. Thus, the predictor associated with a
certain day corresponds to the average obtained using the same day and the previous 2 days.

3.3. Statistical Downscaling Method
3.3.1. Weather Type Classification
First, the PCA analysis is applied to the SLP and SLPG daily data for the calibration period. In this example,
the calibration period is a 40 year representative period from 1960 to 1999. In this study, a variance equal to
95% is considered, which corresponds to the first 38 PCs.

A number of M 5 100 patterns is established in the application of KMA. The selection of a hundred classes is
made based on the compromise between an easy handle characterization of synoptic climatologies and
the best reproduction of monthly sea-state parameters (model validation). A sensitivity analysis of the
model validation has been performed considering a different number of clusters, varying between M 5 20
and M 5 400. Figure 4 shows the 100 WTs, organized in a bidimensional lattice. In the figure, the WTs are
represented by the isobars. The high-pressure systems over the averaged air pressure at sea level (1013
hPa) are displayed on a red scale and the low-pressure systems on a blue scale. Similar patterns are located
together, varying smoothly from one cell to another. WTs with intense low-pressure systems but different
locations of the pressure center are distributed at the corners of the lattice, being identified as different cir-
culation patterns. The standard positive North Atlantic Oscillation (NAO) mode, characterized by a strength-
ening of the low over Iceland and the high around Azores islands, are at the bottom left corner of the
lattice, while WTs with an intense low-pressure center on the North Atlantic Ocean between 40� and 58� lat-
itudes are located at the bottom right corner of the lattice. These latter WTs can be associated with East
Atlantic (EA) positive phase situations, a north-south dipole similar to NAO but with its center located south-
ward (deeper low at 50�–55� and a higher subtropical high).

The seasonal or interannual variability can be analyzed using the WT classification. Figure 5 graphically
shows the seasonal and total probability of the WTs from NCEP-NCAR reanalysis-I during the calibration

Figure 3. (left) Scatterplot and quantile-quantile plot and (right) time series of significant wave height (m) from buoy records versus GOW hindcast for a location in (a) west Ireland and
(b) Norwest Spain. Buoy records are in red and GOW data in black.
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Figure 4. The 100 weather types represented by the SLP fields (hPa) obtained from the atmospheric classification.

Figure 5. (a) Seasonal probability of occurrence of the 100 weather types (classification shown in Figure 4) for the NCEP-NCAR reanalysis-I for the calibration period 1960–1999. (b) Prob-
ability of occurrence for the present conditions (1960–1999) of the weather types from the NCEP-NCAR reanalysis-I, 20CR reanalysis, and climate model EC-EARTH, from left to right.
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period of 40 years. Darker blue color indicates WTs with high frequency and the lighter blue the most
unusual. Winter season shows the largest variability of WTs while the synoptic patterns in summer are con-
centrated in several WTs located in the middle of the KMA lattice, corresponding to high-pressure situa-
tions. Patterns in the rest of seasons cover a wider range of WTs. The WTs in the corners of the lattice are
detected only in winter (DJF), corresponding to a low-pressure center over the North Atlantic Ocean.

3.3.2. Relationship Between Predictor and Predictand
Besides being a description of atmospheric states, the classification is also a tool for understanding atmospheric
processes and the linkage between circulation and surface climate [Huth, 2010]. In this section, the nonlinear
relation between predictor (X, atmospheric conditions) and predictand (Y, local wave climate) is described.

The local wave climate data of the two selected locations are projected into the WT classification. The
hourly sea-state parameters Hs, Tm, mean wave direction (hm), wave energy flux indicator (H2

s Tm), and the
components x and y of the mean energy flux indicator, corresponding to daily predictor fields represented
by each WT are projected in each pattern during the calibration period.

Figure 6 presents local wave climate information at the northwest Spanish location associated with four dif-
ferent WTs. The dominant WT in summer (WT35) represents a neutral atmospheric situation, with weak high

Figure 6. Several patterns (WT35, WT100, WT29, and WT2 from the WT classification shown in Figure 4) with the associated distribution of hourly significant wave height and mean
period and distribution of the significant wave height and mean direction at GA location. The contours represent the SLP field (dashed below and continuous over 1013 hPa) and the
red scale represents the SLPG.
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and low-pressure systems. The joint distribution f35(Hs,Tm) and the join distribution f35(Hs,hm) are also dis-
played. The most probable Hs is around 1.5 m, the corresponding Tm is around 7 s, and hm is NW, although
a wide range of directions from SW to NE are probable. WT97, a pattern that only occurs in winter, is also
shown in Figure 6, with the associated joint distributions f97(Hs,Tm) and f97(Hs,hm). In this case, WT97 repre-
sents an intense low-pressure system in the Northeast Atlantic with important SLPG. The atmospheric pat-
tern is reflected in the associated sea states. Hs is around 9 m, Tm around 12 s, and hm mainly from W. Hs

and Tm associated with WT35 and WT97 are clearly different, reflecting a predominant swell nature of waves
in winter and local wind origin in summer. Other two patterns are also shown in Figure 6. WT29 is a winter
pattern with a low-pressure center located northward which generates high energetic (lower Hs but larger
Tm than WT97) northwesterly waves at GA location. WT2 represents a local high-pressure center with the
associated sea waves mainly with a northeast direction at GA.

3.4. Validation of the Statistical Downscaling Method
In order to verify the skill of the SD method to predict multivariate wave climate, a validation analysis from
2000 to 2013 period is performed, comparing the estimations from the statistical downscaling model
against the parameters obtained from the quasiobservations (GOW wave data).

The mean and 95 percentile of Hs (Hp95), Tm, H2
s Tm, and mean wave energy flux direction (hFE) parameters

are validated using the corresponding sea-state parameter distribution associated with each WT during the
calibration period. Figures 7 and 8 show the comparison at the west Irish and northwest Spanish locations,
respectively. The simulated monthly wave climate from the SD model is able to reproduce the quasi-real

Figure 7. Time series comparison and scatterplots of the monthly sea-state parameters: Hs, Hp95, Tm, Hs
2Tm, hFE in the period 2001–2009 at the IR location. Solid lines show the GOW

hindcast time series. Dashed lines represent the monthly parameters obtained from the downscaling framework proposed.
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data, even for local maxima and minima monthly values of all the sea-state parameters analyzed. Although
some discrepancies can be found for some specific months, the interannual variability of all these sea-state
parameters is well reproduced for the two locations studied. The correlation coefficient (q), root mean
square error (RMS), the scatter index (SI) and the bias are computed for each validated variable. It can be
observed that the range of the correlation coefficient is between 0.80 and 0.97. The RMS is about 0.3 m for
Hs, 0.3 s for Tm, 30 m2 s for H2

s Tm, and 11� for hFE. The largest differences are found for the 95 percentile of
Hs (RMS 5 0.81 at IR location and RMS 5 0.78 at GA location) and hFE (RMS 5 12.48 at IR location and
RMS 5 9.34 at GA location).

4. Applications of the Statistical Downscaling

A wave climate characterization to better understand the drivers of the local predictand is presented.
Besides, this method also provides a useful tool to obtain local wave climate outside the calibration period.
A wave hindcast for the whole twentieth century and for a short-term period (last winter) or wave climate
projections are described.

4.1. Wave Climate Characterization
Besides obtaining the most representative synoptic situations in the NE Atlantic, the organized atmospheric
classification provides the possibility of representing a local wave climate variable at a particular location on
the 2-D lattice by projecting the variable value associated with each WT map. A connection between the

Figure 8. Time series comparison and scatterplots of the monthly sea-state parameters: Hs, Hp95, Tm, H2
s Tm , hFE in the period 2001–2009 at the GA location. Solid lines show the GOW

hindcast time series. Dashed lines represent the monthly parameters obtained from the downscaling framework proposed.
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circulation patterns on the North Atlantic Ocean and the wave climate in both locations is, therefore, estab-
lished. Figure 9 shows the mean and standard deviation of Hs and hFE for each WT cluster at the IR and GA
locations.

Larger mean significant wave heights, usually associated with high variances, are related to weather types
with intense low-pressure centers at both bottom corners of the lattice. In the case of the Irish location, the
patterns with larger waves correspond to positive NAO modes, with an intense low-pressure center around
Iceland (left bottom WTs in the lattice). In the case of the Spanish location, the highest energetic waves can
be associated with both, the standard positive NAO pattern and the positive EA pattern, showed in the WTs
at the lower right corner of the lattice (i.e., the WT97 described previously as a specific winter pattern). EA
WTs generate high energetic waves with a west-southwest mean direction, due to the fact that these spatial
patterns are related with westerly winds, while NAO WTs are associated with slightly lower energetic waves
with a northwest direction. The different wave conditions at both locations associated with these NAO and
EA patterns reflect that a large fraction of wave anomalies in the North Atlantic Ocean, mainly in the north-
ern part, is explained by NAO; while the high fraction of the rest of anomalies in the southern part is related
to EA [Woolf et al., 2002]. In the case of waves associated with the predominant summer patterns, located in
the middle of the KMA lattice, a north mean energy flux direction reflects frequent high-pressure conditions
that generate waves coming from north-northeast direction.

Figure 10 shows the bidimensional distribution of Hs and hm for the 100 WTs at the west Irish location. The
WTs most clearly detected are the ones corresponding to the largest energetic sea states. As it is previously
described, largest significant wave heights are associated with considerable low-pressure patterns, located
at the corners of the KMA lattice. The location of the low-pressure center in the North Atlantic Ocean distin-
guishes the wave origin which it is mainly reflected in the wave direction. For example, northward low-
pressure centers (positive NAO patterns) generate waves coming from the west at the Irish location and
waves from the northwest at the Spanish location (e.g., WT19 or WT29). Higher periods associated with
these WTs are also detected at the Spanish location due to a farther distance from the storm generation
area (the associated distributions of Hs and Tm are not shown). Southward low-pressure centers (positive EA
patterns) are linked to waves coming from the southwest at the Irish location or from the west at the Span-
ish location (e.g., WT87 or WT97). This southerly shift in wave direction is related to an EA positive pattern
[Charles et al., 2012]. Wave energy is more significant if the position of these centers is closer to the wave

Figure 9. Wave climate characterization at the (top) west Irish location and (bottom) northwest Spanish location associated with WT classification (shown in Figure 4). (left) The mean
significant wave height (units in m), (middle) standard deviation of the significant wave height (units in m), and (right) mean wave energy flux direction (units in �) associated with
each WT.
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location (WT29 generates more energetic waves at Irish location, while WT97 generates more energetic
waves at Spanish location). Neutral patterns are associated with low energetic waves coming (low values of
Hs and Tm) from a wider range of directions, due to the fact that the predictor characterization of regional
patterns while these waves are generated by local phenomena. Several WTs represent particular situations,
e.g., WT1, is characterized by a high-pressure center at the latitude of the Irish location, which generates
local waves from the north at this location. These differences in the wave direction are detected in the
wave climate characterization by means of the mean value of the significant wave height and mean energy
flux direction associated with each WT.

4.2. Wave Climate Hindcast
A long-term wave climate historical reconstruction and a short-term wave hindcast in winter 2013–2014
require historical or forecasted information of the synoptic circulation systems.

The local long-term wave climate historical reconstruction is derived from the twentieth century atmos-
pheric reanalysis SLP data (20CR) [Compo et al., 2011]. The 20CR is a global reanalysis spanning the twenti-
eth century, created by the NOAA ESRL/PSD. The SLP fields are available at 6 hourly temporal and 2�

horizontal resolution. In this reanalysis, pressure observations have been combined with a short-term fore-
cast ensemble of an NCEP numerical weather prediction model. The use of the SLP fields from 20CR as a his-
torical predictor into the SD model is validated by assessing the occurrence rates of the hundred WTs
during the calibration period against the NCEP-NCAR reanalysis-I (Figure 5b). Once the pressure data source
is considered suitable, the probability of occurrence of the WTs throughout the XX century is estimated to
reconstruct the historical wave climate.

Figure 11a shows the monthly mean reconstructed Hs at the two study sites since 1900. Figure 11b shows
the comparison of winter Hs (DJFM) between the statistically downscaled 20CR (black) and the SD NCEP
reanalysis-I (blue). This comparison reveals a good agreement between the wave hindcasts and a high skill
to simulate the climate variability. The GA location (2.63 m mean Hs and 3.44 m winter mean Hs for 1900–
2010) does not present such high wave climatologies as IR location (3.24 and 4.24 m, respectively). An inter-
esting point is that, while GA location shows homogeneous interannual variations with maxima along the

Figure 10. Distribution of the significant wave height and the mean wave direction associated with each weather type at the west Irish
location (shown in Figure 4). The units of the radial distance are in m with the same scale as in Figure 6 (Hs increments are 2.0 m).
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whole period, IR largest values are observed during the period 1970–2000. Several studies have already
accomplished a wave climate reconstruction from 20CR on North Atlantic. Bertin et al. [2013] developed a
dynamic downscaling with the numerical model WaveWatch III forced with wind and ice fields from 20CR.
Wang et al. [2012] obtained reconstructed waves by a regression SD model using 20CR SLP as predictor. For
comparison, the mean and linear trends of Hs from the proposed SD approach during several periods were
assessed. We have found that our mean Hs at the two target locations are similar to those from Bertin et al.
[2013] for the period 1900–2008 (3.2 m at IR and 2.6 m at GA) but differ from those of Wang et al. [2012] for
the period 1958–2001 (2.9 m at IR and 2.4 m at GA). Lower estimates are obtained from the SD model of
Wang et al. [2012], nevertheless our mean Hs are similar to the dynamically downscaled waves from MSC50
[Cox and Swail, 2001] for the same period (3.2 m at IR and 2.6 m at GA). On the other hand, the analysis of
the Hs linear trends reveals an increase for 1958–2001 (0.5 and 0.15 cm/yr at IR and GA locations, respec-
tively) similar to those found by the SD model by Wang et al. [2012], 0.45 cm/yr at IR and 0.10 cm/yr at GA,
and the MSC50 data (0.50 cm/yr at IR and 0.10 cm/yr at GA), but our estimated trend at IR location
(0.019 cm/yr) for the XX century differs from Bertin et al. [2013], who found higher positive trends on the
Northeast Atlantic (0.6 cm/yr at IR). It is noteworthy that after the period 1958–2000 with an increase in
wave intensity, estimated trends over the last 30 years (1980–2009) are significantly negative at the two
studied points for both, mean and winter Hs (20.23 cm/yr mean Hs trend and 21.78 cm/yr winter Hs trend
at IR location and 20.17/20.96 cm/yr, respectively, at the GA location). In order to better understand these
trends, the multidecadal and interannual wave variability driven by the NAO [Woolf et al., 2002] was ana-
lyzed. According to Bertin et al. [2013], we have found a large positive correlation with winter NAO [Jones
et al., 1997] at the IR point in the NE Atlantic (0.64 Pearson correlation, Figure 11b) and a weak positive cor-
relation at the GA location in South-East Atlantic (0.035 Pearson correlation). The stronger relation between
NAO and waves at IR location explains the multidecadal wave climate variability. A decrease of wave height
coincides with a decline of the NAO to the 1960s, an increase of wave height in the period 1958–2000 with

Figure 11. (a) Time series of the monthly Hs historical reconstruction from 20CR (1900–1960), NCEP-NCAR reanalysis-I for the calibration
period (1960–2000) and the validation period (2001–2013) and the winter 2013–2014 (red line) for the two target points. (b) Winter Hs

(DJFM) reconstruction from 20CR (black) and NCEP-NCAR reanalysis-I (blue) at IR location and the NAO winter climate index (green).
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the NAO rise to early 1990s. Therefore, the decrease in the last 30 years could be influenced by the recent
smaller NAO fall.

The SD method provides a tool to update wave climate information of numerical outcomes with low com-
putational cost. Here, we have hindcasted the winter 2013–2014, a particularly large winter with a strong jet
stream driving across the Atlantic and causing large wave storms affecting Portugal and Spain. Red lines in
Figure 11 indicate the estimated monthly mean Hs. The larger waves which arrive to the European coast in
winter 2013–2014 are shown, reaching 5 m, at GA location and 6 m at IR location. We note that the SD
model can also be used as a forecast tool in a similar way.

4.3. Wave Climate Projections
The future projections of local waves from the outputs of a GCM under different climate change scenarios
can be obtained applying the SD model. We use the EC-Earth GCM [Hazeleger et al., 2012], from a European
consortium with collaborations of 27 Institutions. EC-Earth model is formed by the Integrated Forecast Sys-
tem (IFS) of the European Centre for Medium Range Weather Forecasts (ECMWF). Here we use the SLP data
of the CMIP5 experiments, called historical for recent past conditions and RCPs (Representative Concentra-
tion Pathways) [Moss et al., 2010] for the future runs. The selected RCPs included one mitigation scenario
leading to a very low forcing level (RCP2.6) and one very high baseline emission scenario (RCP8.5), leading
to high greenhouse concentration levels. Perez et al. [2014] analyzed numerous CMIP3 and CMIP5 GCMs
and found that EC-Earth is one of the most skilled in the North Atlantic region. Moreover, the EC-Earth
model is able to reproduce the occurrence of the synoptic atmospheric conditions during the historical
period (Figure 5b).

Figure 12 shows the resulting box plots of the estimated winter Hs of the SD model for historical, present,
and projected 30 year periods at the two studied locations. A slight decrease on future winter Hs relative to
the present climate time slice is detected, being winter Hs from RCP8.5 higher than RCP2.6. Ensemble
CMIP5-based statistical wave projections also provide a general decrease of annual Hs in the midlatitudes of
the North Atlantic for the period 2080–2099 relative to the period 1980–1999 for the RCP8.5 scenario [Wang

Figure 12. Box plots of Hs winter (DJFM) for present climatology (1980–2010), historical reconstructed periods (1900–1930, 1930–1960),
and future projected climate scenarios (2070–2100) for the EC-Earth model. On each box, the central mark is the median, the edges of the
box are the lower (Q1) and upper (Q3) quartiles (interquartile range, IQR), and the whiskers extend to the higher values, within the range
defined by Q1 2 1.5(IQR) and Q3 1 1.5(IQR).
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et al., 2014]. It is interesting to point out the projected values in 2070–2099 at GA and IR locations do not
show variations on mean and variance different to those reconstructed in the past.

5. Summary and Conclusions

A statistical downscaling framework to project wave climate is proposed based on weather typing. The sta-
tistical relation is established between the atmospheric predictor, defined by the SLP fields and the squared
SLP gradients, and the local wave climate. The model is applied in two locations on the Atlantic coast of
Europe: west Ireland and northwest Spain. Waves in these two locations are generated by storms in the
North Atlantic. Therefore, the spatial domain of the predictor is defined taking into account the storm activ-
ity in this area. Three days are considered as the mean period representative of the recent atmospheric con-
ditions responsible for waves arriving at the studied locations. Three days mean predictor fields are
calculated on a day-to-day basis, associated with the last day. PCA is applied to this daily predictor to reduce
the data dimensionality and simplify the application of the classification technique. Weather types are
obtained using KMA technique, with a postorganization onto a bidimensional lattice by a similarity criterion.
The distribution of hourly sea states associated with each weather pattern is statistically established.

The method has been validated and several applications are shown. The following features of the proposed
method are relevant: (1) The SD method is able to integrate different time and spatial scales of the wave genera-
tion and propagation processes. Statistical relationships between predictor and predictand are solved integrat-
ing 3 days history in the daily predictor over the generation area using WT approach. (2) The weather typing
approach provides a physical explanation of the relation between local waves and regional synoptic atmos-
pheric conditions. The application of the SD model at two locations northward and southward East Atlantic
Ocean reveals clear associations with specific low/high-pressure systems in the Atlantic Ocean. (3) The SD
method provides multivariate results of wave climate. Univariate or bivariate empirical probability density func-
tions of different sea-state parameters are estimated using this SD method. Other statistics, besides the mean
value, can be predicted. Further research is needed to extend this approach to statistically model extreme values
conditioned to a particular WT, following for instance the method proposed by Izaguirre et al. [2012].

The applied SD model provides these conclusions:

1. The local multivariate wave climate can be characterized based on a physical relation with atmospheric
conditions.

2. The model validation proves to reproduce the seasonal and interannual variability of the monthly mean
and 95 percentile of Hs, Tm, H2

S Tm, and hFE. Therefore, the proposed SD method is a useful tool for coastal
impact assessment.

3. The SD model is able to produce long historical reconstructions. SLP forcing from 20CR reanalysis is used
to reconstruct local waves through the XX century, obtaining wave statistics and trends in agreement
with previous works by other authors [Bertin et al., 2013; Wang et al., 2012]. Moreover, the obtained results
are similar to those obtained by dynamical downscaling techniques [Bertin et al., 2013; Cox and Swail,
2001] that take into account the complex processes of wave generation, propagation, and dissipation
numerically. The advantage of the SD method is the low computational time to characterize wave climate
without information of wind fields and bathymetry.

4. The update of the local wave hindcast in the last winter shows the applicability of the SD approach for
seasonal forecast.

5. The SD model is a useful tool to get wave climate multimodel ensemble projections with low computational
cost. A negative trend has been detected for the end of this century, in accordance with Wang et al. [2014].
Nevertheless, the detected decrease is similar to modeled historical variations in the XX century.

6. Regarding future projections, we should note the limitations of the SD model from the implied assump-
tions of the statistical approach: A stationary statistical relationship and projected changes should lie
within the range of the natural variability. SD model is unable to generate local waves from exceptional
weather conditions that are not registered in the past.

7. The application of this statistical method to downscale wave climate at different locations around the
globe required to adapt the predictor spatial domain to the area of influence of the wave energy
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reaching the particular location of interest. Besides, the number of days to calculate the mean predictor
fields needs to reflect the time wave energy takes to reach that particular location, strongly related to the
storminess over the ocean basin.
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