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Abstract In this study, a method to obtain local wave predic-
tor indices that take into account the wave generation process
is described and applied to several locations. The method is
based on a statistical model that relates significant wave height
with an atmospheric predictor, defined by sea level pressure
fields. The predictor is composed of a local and a regional
part, representing the sea and the swell wave components,
respectively. The spatial domain of the predictor is determined
using the Evaluation of Source and Travel-time of wave
Energy reaching a Local Area (ESTELA) method. The re-
gional component of the predictor includes the recent histor-
ical atmospheric conditions responsible for the swell wave
component at the target point. The regional predictor compo-
nent has a historical temporal coverage (n-days) different to
the local predictor component (daily coverage). Principal
component analysis is applied to the daily predictor in order
to detect the dominant variability patterns and their temporal
coefficients. Multivariate regression model, fitted at daily
scale for different n-days of the regional predictor, determines
the optimum historical coverage. The monthly wave predictor
indices are selected applying a regression model using the
monthly values of the principal components of the daily
predictor, with the optimum temporal coverage for the region-
al predictor. The daily predictor can be used in wave climate
projections, while the monthly predictor can help to

understand wave climate variability or long-term coastal
morphodynamic anomalies.
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1 Introduction

Atmospheric climate variability can be explained by principal
circulation modes and the temporal variation of these modes is
usually defined as a climate index. The North Atlantic
Oscillation (NAO) was the first regional signal identified
(Walker and Bliss 1932), with the corresponding index being
defined, e.g., as the normalized pressure difference between
Iceland and Portugal (Hurrell 1995). The Southern Oscillation
Index (SOI) is another principal large-scale fluctuation in air
pressure occurring between the western and eastern tropical
Pacific during El Niño and La Niña episodes. This index is
calculated based on the normalized air pressure differences
between Tahiti and Darwin, Australia (Ropelewski and Jones
1987). Other important climate indices are the North Pacific
Index (NPI, Trenberth and Hurrell 1994), which represents the
strength of the northeastern Pacific westerlies; the Arctic
Oscillation (AO), a hemispheric phenomenon characterized
by a semi-permanent low pressure over the North Pole
(Thompson and Wallace 1998); the Antarctic Oscillation
(AAO), also known as the Southern Annular Mode (SAM),
a similar variability pattern to the AO in the Southern
Hemisphere (Thompson and Wallace 1998). These climate
indices can be obtained applying principal component analy-
sis (PCA) to atmospheric variables, mainly pressure fields.

Interannual variability of wave climate has been explored
using these well-known climate indices. The correlation be-
tween waves and climate indices has been analyzed using
different databases (e.g., global wave reanalysis as C-ERA-
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40, Sterl and Caires 2005; visual data, Gulev and Grigorieva
2006; altimeter data, Woolf et al. 2002) or separating the sea
and swell component (Semedo et al. 2011; Gulev and
Grigorieva 2006). The analysis has also been performed cal-
culating spatial correlation patterns (Stopa et al. 2012; Fan
et al. 2012; Dodet et al. 2010; Hemer et al. 2010) or correlating
the first principal components of wave fields obtained from
PCA (Sterl and Caires 2005; Gulev and Grigorieva 2006;
Semedo et al. 2011). These indices have been used also to
estimate the interannual variability of extreme waves, includ-
ed as covariates in a time-dependent extreme distribution (e.g.,
Izaguirre et al. (2010) and Izaguirre et al. (2011), using wave
altimeter data; Hemer 2010, using buoy data).

The interannual variability has also been modeled using
covariates defined as the seasonal mean sea level pressure
(SLP) anomalies and the squared SLP gradient index, calcu-
lated in a local area enclosing the target point (Wang et al.
2004; Wang and Swail 2006; Caires et al. 2006). Seasonal
mean SLP fields over a regional area (e.g., North Atlantic or
North Pacific) have also been used as a predictor in statistical
models that simulate seasonal mean or 90th percentiles of
significant wave height (Wang et al. 2004). Besides, due to
the fact that every sea state at a particular location is usually a
mix of sea and swell components, a local predictor and a
regional predictor are used to simulate the sea and swell wave
components at an hourly scale, respectively (Wang et al. 2012;
Casas-Prat et al. 2014).

The well-known climate indices explain the atmospheric
variability at certain large regions. However, waves are gen-
erated by a combination of local and remote winds, being
required two predictor components with not only different
spatial domain but also different temporal ranges. Thus, there
is a need for developing specific wave predictor indices for
evaluating wave climate variability at a specific location.

Some considerations about atmospheric conditions must be
taken into account in order to find temporal coefficients of
atmospheric variability modes as possible wave predictor
indices. The surface wind field is the main force of wave
heights. However, in global circulation models, sea wind
fields are not as well reproduced as sea level pressure fields
(Caires et al. 2006). Besides, the geostrophic wind direction is
well-represented by the isobars, and geostrophic wind speed is
proportional to the pressure gradient. The SLP fields and the
square SLP gradients are, therefore, considered to define the
wave predictor indices, in line with the downscaling statistical
predictor used by Wang et al. (2012) and Casas-Prat et al.
(2014). Moreover, two components, with different spatial
extensions and different historical temporal coverages, are
used in order to characterize sea and swell components of
the wave climate. The ESTELA method (Evaluation of
Source and Travel-time of wave Energy reaching a Local
Area, Perez et al. 2014, in this volume) is applied to define
the spatial domains and the temporal ranges of the

atmospheric fields. The variability patterns are identified by
applying a statistical model that relates the local significant
wave height with the atmospheric conditions at daily and
monthly scale.

The aim of this work is to present a method for obtaining
useful predictor indices to characterize wave climate at any
location worldwide. The developed semi-automatic method
improves the spatial and temporal definitions of the predictor
components and provides additional information of wave
climate variability. The rest of the article is structured as
follows: the method proposed to define the wave predictor
indices is described in Section 2. The steps of the method are
explained in detail by means of an application in Section 3.
Other examples of wave predictor indices at locations with
different wave climatology are presented in Section 4.
Section 5 completes the study with a summary and some
concluding remarks.

2 Method

A flowchart of the method proposed to define local wave
predictor indices is shown in Fig. 1. Both simultaneous his-
torical sea level pressure fields (predictor) and significant
wave height (predictand) databases are required as inputs.
This information is usually available from reanalysis data-
bases at 6-hourly resolution.

The predictor is defined by a local component which
represents the sea wave component and a regional one which
represents the swell wave component. The different spatial
domain and historical temporal range of both predictor com-
ponents have to be defined according to the local wave climate
at the target location. The ESTELAmethod (Perez et al. 2014)
is applied to define these two relevant factors. Local predictor
reproduces waves reaching to the target location within 1 day.
Regional predictor covers a geographic area of all possible
waves reaching the target location with a historical temporal
coverage (the same day as the local predictor and several
previous days). These n-days should capture the recent atmo-
spheric conditions responsible of the swell wave component.
Therefore, the predictor is defined at a daily scale joining the
daily mean SLP in the local spatial domain and the n-days
means in the regional domain. The principal component anal-
ysis (PCA) is then applied to the daily predictor fields in order
to obtain the dominant spatial variability patterns and their
corresponding temporal coefficients.

Regarding the predictand, the daily mean significant wave
height is processed from the input wave reanalysis. For each
n-days, a multivariate regression model is fitted between daily
significant wave height and principal components of the daily
predictor. The n-days associated to the best multivariate re-
gression model fit is chosen to be the optimal historical
temporal coverage of the regional predictor.
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Monthly wave predictor indices for a target location are
selected, applying a multivariate regression model between
the local monthly significant wave height and monthly values
of the principal components of the daily predictor with the
optimum historical temporal coverage of the regional
predictor.

3 Application

In this section, we describe the steps of the method in more
detail through applying it on a particular location in the
northwest coast of Spain.

3.1 Data

The atmospheric data used in this work as the predictor come
from the reanalysis dataset of the National Center for
Environmental Prediction-National Center for Atmospheric
Research (NCEP/NCAR, Kalnay et al. 1996). The historical
wave data used as predictand is the Global Ocean Wave
reanalysis (GOW, Reguero et al. 2012). Both data sets com-
prise a common period of time of 60 years, from 1948 to 2008.

The NCEP/NCAR reanalysis SLP data consist of 6-hourly
fields on a Gaussian grid with T62 resolution (about 210 km).
The GOW database is an up-to-date wave dataset with global
coverage and hourly resolution. The global wave dataset has a
grid with a spatial resolution of 1.5° in longitude and 1° in
latitude and was computed using the model WAVEWATCH
III (Tolman 2002) forced with 6-hourly wind fields from the

NCEP/NCAR reanalysis project. Bathymetry data used for the
simulation comes from the ETOPO dataset (NOAA 2006). A
post-process using altimetry data has been applied consisting
of (a) the identification of possible outliers due to tropical
cyclones not correctly simulated because of insufficient reso-
lution in the wind forcing (Mínguez et al. 2012) and (b) a
directional correction procedure (Mínguez et al. 2011) of the
simulated significant wave heights, especially remarkable for
large values of wave height. The database has been compared
with other existing global analysis showing similar quality
with the advantage of providing longer time records.

3.2 Spatial predictor definition

The ESTELA method (Perez et al. 2014, in this issue) is
applied to define the predictor area of influence and the
possible historical temporal coverage of the regional predictor
component.

The ESTELA method provides the effective energy flux in
a spatial domain and the wave travel time for the target
location. The method is based on wave hindcast data using
both geographic-based and physically based criteria.
Geographic criterion is applied to limit the study into the
relevant spatial domain. The valid source points in the selected
spatial domain are linked to the target location along a great
circle path without any interruption. Frequency-direction
wave information from a global wave parameter database
(Rascle et al. 2008; Rascle and Ardhuin 2012) is used to
calculate the energy flux at each source point. The wave
spectra have been reconstructed using the significant wave

Fig. 1 Flow chart to obtain predictor indices for wave conditions
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height, peak period, mean direction, and directional spread for
up to six partitions of the spectrum, the wind sea, and five
swell trains in the more general case. This information is
provided in a spatial grid at 0.5° resolution and 3-hourly time
resolution from 1993 to 2012. The effective energy flux for all
the source points is calculated taking into account only the
energy traveling towards the target point of each 3-hourly
wave spectrum (physical criterion), at the group velocity,
removing the amount of energy loss by viscous dissipation.
The gain/loss of energy in each cell can be viewed as the
difference between the incoming and the outcoming flux
along the great circle. The analysis of ESTELA maps for
specific time periods can be used to analyze the wave climate
variability. In this application, the mean effective energy flux
is considered to identify the spatial domain of influence for
wave generation at a specific location. The predictor area for
statistical downscaling is established almost automatically.

The upper panel of Fig. 2 represents the effective energy
flux at the source points for the selected location in the
northwest Spanish coast [10° W, 44° N], from the lowest

energy (blue color) to the largest energy (red). Red dashed
lines represent great circles for 16 directional sectors. Gray
and black lines represent the wave energy travel time, in days.
The lower panel represents the gain/loss of energy flux,
informing about important wind-seas in a local area around
the target point and 2–6 days swells from the whole North
Atlantic Ocean. In this case, it can be observed that wave
energy is generated and comes from a large area extended over
the North Atlantic Ocean. The areas of energy loss could be
explained by (1) wind-seas forcing waves to propagate in
directions away from the target point, increasing directional
spread and (2) the uncertainties associated to the spectra

Fig. 2 Effective energy flux at
the source points for the target
point at the Spanish northwest
coast (upper panel). Travel time
in days is represented by the gray
and black lines. Red dashed lines
represent great circles for 16
directional sectors. The red and
black boxes are the spatial domain
of the regional predictor and the
local predictor, respectively.
Gain/loss of energy flux for the
target point at the Spanish
northwest location (lower panel)

�Fig. 3 The first six empirical orthogonal functions (EOFs) and principal
components (PCs) of the predictor defined to obtain the monthly wave
climate indices at a given location at the Spanish northwest coast. The
SLP anomalies are represented by contour lines, plotting the positive
anomalies in red and the negative in blue. The anomalies of the squared
SLP gradients are represented in a blue-white-red scale
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reconstruction for those grid points with the highest incoming
energy close to the target location.

Based on the ESTELA results, the spatial domain of the
predictor for the swell wave component is defined as an area of
the North Atlantic Ocean, spanning from 35° N to 70° N and
from 60° W to 5° W, with a 2.5° spatial resolution (regional
area). The predictor for the sea component is defined as a
smaller area limited by the 1-day travel time region, spanning
from 40° N to 50° N and from 20° W to 5° W (local area).

The method requires the definition of a historical temporal
coverage in the regional spatial domain. The temporal cover-
age of the predictor is established as the n-days in the regional
area (from 2 to 9 days) and 1 day in the local area, using the
averaged SLP and the averaged squared SLP gradients with
the corresponding temporal coverage. The daily predictor is
calculated as the daily mean fields in the local area and the n-
days mean fields in the regional area, being the last day of the
n-days temporal coverage of the regional predictor component
coincident with the day of the local predictor component.

PCA is a statistical technique widely used in clima-
tology to identify dominant variability patterns and re-
duce dimensionality. PCA is applied to the daily pre-
dictor to detect the main variability modes of the wave
predictor for the target location considered and the
temporal coefficients of the identified patterns. PCA
projects the original data on a new space, searching
for the maximum variance of the sample data. The
eigenvectors (empirical orthogonal functions, EOFs) of
the data covariance matrix define the vectors of the new
space. The transformed components of the original data
over the new vectors are the principal components
(PCs). The original predictor X(x,t) can be expressed
as a linear combination of EOFs and PCs:

X x; tið Þ ¼ EOF1 xð Þ � PC1 tið Þ þ EOF2 xð Þ � PC2 tið Þ þ…

þ EOFN xð Þ � PCN tið Þ

ð1Þ

Fig. 4 Sensitivity analysis of the multivariate regression model of the
daily significant wave height using a regional predictor with different
temporal coverages (in days) at three different locations: Spanish

northwest coast (left panels); Peruvian location (middle panels); Oregon
location (right panels). Correlation coefficient (ρ), root mean square error
(rms), bias, scatter index (SI)
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N being the dimension of the original data. In this
study, N=2N1+2N2, N1 being the number of source
points in the regional area (345 grid points) and N2 the
number of source points in the local area (35 grid
points). The number of grid points of the regional and
local areas are multiple by 2 because the predictor is
defined by means of the SLP fields and squared SLP
gradient fields. The EOFs are ranked in an increase
order of explained variance. A dimension reduction
can be obtained while keeping a high amount of vari-
ance. In this study, a variance equal to 95 % is consid-
ered. Therefore, the daily predictor can be defined by
the principal components at a daily scale:

X x; tið Þ ¼ EOF1 xð Þ � PC1 tið Þ þ EOF2 xð Þ � PC2 tið Þ þ…

þ EOFd xð Þ � PCd tið Þ

ð2Þ

where d=41 is the number of EOFs explaining the 95 %
variance of the original data.

Figure 3 shows the first six EOFs with the target location
and its corresponding PCs of the predictor, with the PCs being
standardized and the EOFs multiplied by the corresponding

standard deviation. EOF1 explains 28.58 % of the variance;
EOF2, 18.78 %; EOF3, 10. 36 %; EOF4, 5.62 %; EOF5,
5.04 %; and EOF6, 3.83 %. The variability spatial patterns
are defined by the anomalies of SLP and squared SLP gradi-
ents in the generation and local areas. The SLP anomalies are
represented by contour lines, plotting the positive anomalies
in red and the negative in blue. The anomalies of the squared
SLP gradients are represented in a blue-white-red scale. Note
that the land points are not considered in the predictor defini-
tion. In this case, noise in the predictor of wave climate due to
a strong gradient in Greenland which would determine the
variability pattern identification is avoided.

3.3 Optimal historical temporal coverage of the regional
predictor

The optimal historical temporal coverage (n-days) of the re-
gional predictor is defined in this step of the method. A multi-
variate regression model between the daily significant wave
height at the target location (predictand) and the corresponding
daily PCs (predictor) is applied considering several temporal
coverages. Data from 1960 to 1999 define the calibration
period of the statistical model. Data from 2000 to 2008 are
used as amodel validation period. The number of predictor PCs

Fig. 5 Multivariate regression model of the daily significant wave height at the Spanish northwest coast using a regional predictor with a historical
temporal coverage of 4 days. Upper panel: calibration period. Lower panel: validation period
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are selected in a forward procedure. The first predictor is
obtained from the best fit (smallest sum of squared error,
SSE) among all the dmodel fits with a single predictor (d being
the number of all potential predictors, in this case, PCi, i=1,…,
d). The second predictor is chosen from the rest of the predic-
tors (d-1, except the one selected previously) from the best fit
among d-1 model fits with two predictors, the best predictor
selected in the previous model plus one of the remaining
potential predictors. The cycle continues until a more compli-
cated model does not produce a significant improvement (at the
5% level of significance) to the multivariate regression fit. This
evaluation is based on the F statistics that compare the SSE of
the fit of a simpler-parameter model with that of a more
complicate parameter model (see Wang et al. 2004 for details).

The multivariate regression model is fitted for differ-
ent historical temporal coverages of the regional

predictor at the northwest Spanish location. Several
indicators of the quality of the fittings in the validation
period are calculated in order to select the optimum
temporal coverage of the regional predictor. The skill
indicators are the correlation coefficient (ρ), the root
mean square error (rms), the bias (bias), and the scatter
index (SI). Figure 4 shows the values of these indicators
for different n-days for the regional predictor (1, 2, 3, 4,
5, 6, 9, 15, and 30 days). The results presented in the
left panels correspond to the Spanish location. It can be
observed that the best statistical model is obtained using
a predictor with a temporal coverage of 4 days (n=4).
The calibration of the multivariate regression model at
daily scale at the northwest Spanish location, using a
regional predictor with a temporal coverage of n=4 days,
is shown in the upper panel of Fig. 5. The validation of

Fig. 6 Multivariate regression model of the monthly significant wave height at the Spanish northwest coast using a regional predictor with a historical
temporal coverage of 4 days. Upper panel: calibration period. Lower panel: validation period

Table 1 Monthly PCs selected by the regression model

PC 1 6 3 5 11 4 24 9 15 13

bi −0.8434 0.2717 −0.2531 0.1844 −0.0538 −0.0650 −0.0660 −0.0380 −0.0476 0.0516

PC 2 16 8 31 30 20 21 27 19 18

bi 0.0312 −0.0409 0.0325 −0.0227 −0.0258 −0.0283 −0.0242 −0.0232 −0.0249 −0.0175

1032 Ocean Dynamics (2014) 64:1025–1038



the model is shown in the lower panel, where the
capability of the model to reproduce the daily signifi-
cant wave height can be observed.

3.4 Monthly wave predictor indices

The monthly values of the principal components (PCim), with a
historical temporal coverage of the regional predictor equal to
4 days, are used as the potential monthly wave predictor indices
for the Spanish location. The calibration and validation of the
multivariate regression model at monthly scale is shown in
Fig. 6. As it can be seen, the seasonal and interannual variability
of the monthly wave height is well represented.

The statistical model is defined as a linear combination of
the most important monthly PCs of the predictor defined
specifically for the analyzed target location (PCim), selected
in a forward procedure:

Ym tð Þ ¼ 2:8254−0:8434� PC1m tð Þ þ 0:2717� PC6m tð Þ

−0:2531� PC3m tð Þ þ 0:1844� PC5m tð Þ þ…

The total monthly PCs selected by the multivariate model
with their corresponding coefficient are detailed in Table 1.

The most important predictor is the PC1m, followed by the
PC6m, PC3m, and PC5m (see Fig. 7). Therefore, these predic-
tors define the monthly wave predictor indices for that specific
location. The monthly significant wave height is slightly

better reproduced using the monthly values of the principal
components from the daily predictor (ρ=0.99, rms=0.1316,
bias=−0. 0092, si=0.0517), compared to using monthly SLP
and monthly squared SLP gradients (ρ=0.98, rms=0.1740,

bias=−0. 164, si=0.0684).
Besides the improvement of the downscaling statistical

model of the monthly significant wave height, the defined
wave predictor indices can be used to provide additional info
of the local wave climate. The analysis of the directional
spectrum helps to understand the effect of remote winds,
besides local winds, responsible for wave generation at a
target location (Espejo et al. 2014). Therefore, hourly wave
spectra from the GOW database at the northwest Spanish
location are used to explore the wave climate variability by

Fig. 7 Monthly wave predictor
indices for the Spanish northwest
location using the proposed
method

Fig. 8 Spectral wave climate at the Spanish northwest location: mean spectrum and seasonal spectral anomalies
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means of the correlation with the monthly wave predictor
indices obtained. Figure 8 represents the mean annual wave
spectrum at the target location and the corresponding seasonal
anomalies. There is a clear energy peak on the WNW sector
and periods between 10 and 15 s. This peak is enhanced
during winters, while the anomalies are negative during
summers, reflecting the seasonal fluctuation of the
atmospheric circulation in the North Atlantic. Negative NW
anomalies and small positive NE anomalies on the short
periods are also found at spring, in line with Espejo et al.
(2014) using instrumental data from Villano buoy.

Figure 9 shows the correlation of the monthly wave energy
spectra (the bin energy associated to each sector and period
range) with the first four monthly wave climate indices
(PC1m, PC6m, PC3m, PC5m). The bin is dotted when the
correlation is significant at 90 % confidence. The PC1m pre-
sents the highest correlation with the monthly wave spectra.
The negative phase of the corresponding EOF1 (see the upper

left panel of Fig. 3), characterized by low pressure center
located in the middle of North Atlantic Ocean, correlates
positively with the energy contained in all the period bands
of the SW and NW directional sector. The PC1m seasonal
component agrees with the seasonal fluctuation of wave en-
ergy spectra. In the case of the PC3m, its EOF3 reflects a more
local variability pattern (see the middle left panel of Fig. 3).
The EOF3-positive phase is characterized by a high pressure
center in the north of Spain, generating local winds from the
NE direction, and a low pressure center in the southwest part
of the North Atlantic, causing winds from the SW. Thus, the
positive phase of this variability pattern enhances wave energy
from the NE and from the SW, reflected in the positive
correlation with these corresponding wave energy spectrum
bins (shorter period in the case of the NE wave energy). The
EOF3-negative phase is defined by a high pressure center in
the north of Spain.Winds from the NWdirection generated an
increase of wave energy from that sector, corresponding to a

Fig. 9 Correlation between the monthly wave energy spectrum and the first four monthly wave predictor indices obtained with the proposed method
(PC1m, PC6m, PC3m, PC5m)

Fig. 10 Correlation between the
monthly wave energy spectrum
and the PC2m wave climate index
(upper left panel) or NAO index
(upper right panel). Correlation
between PC2m and the NAO
index (lower panel)
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negative correlation with PC3m. The physical interpretation of
the correlation of PC6m and PC5m is not so obvious due to a
more complicated spatial structure of the variability patterns.

The comparison of the correlation between the monthly
wave energy spectrum and the PC2mwave climate index (upper
left panel) or NAO index (upper right panel) is represented in
Fig. 10. The correlation between PC2m and the NAO index is
shown in the lower panel. A correlation coefficient around 0.7 is
obtained. The EOF2 variability pattern resembles the NAO
pattern (see the right upper panel of the Fig. 3), characterized
by a pressure dipole centered close to Iceland and Azores.
However, the correlation of the wave energy spectra with
PC2m is higher than with NAO because EOF2 is a variability
pattern particularly obtained for the northwest Spanish location.
The EOF2-positive phase, characterized by low pressure center
at Iceland and high pressure center at Azores, presents a positive
correlation with wave energy from the NW sector and a nega-
tive correlation with wave energy from the SW.

4 Other applications

The proposed method is applied in two other locations with
different wave climate: Trujillo (Perú) [80° W, 8° S] and
Oregon (USA) [131° W, 46° N].

The ESTELA method is used to determinate the local and
generation area of the predictor for waves at Trujillo location.
The effective energy flux of the source points and the gain/loss
energy map inform that wave energy coming from both hemi-
spheres is arriving at the target location (see Figure 8 of Perez
et al. 2014, in this issue). The predictor area of influence
considered covers almost the whole Pacific Ocean. The left
panels of Fig. 11 show the first and the fourth spatial variabil-
ity patterns (EOFs) of the daily predictor (the local predictor
area is delimited by a black box). The optimum historical
temporal coverage is established in 12 days (see the
panels of the middle column of Fig. 4). The validation
of the statistical model relating significant wave height

Fig. 11 Spatial patterns of daily predictor for temporal coverage of 12 days for the regional predictor for the Peruvian location (left panels). Validation of
the statistical model at daily and monthly scales (upper right panels). Monthly wave predictors (lower right panel)
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and wave predictor indices are represented in the upper
right panels of Fig. 11, at daily and monthly scale,
respectively. The good model fitting can be observed.
The first four PCs selected by the statistical model,
which are the local monthly wave predictor indices for
Trujillo, are represented in the lower right panels of
Fig. 11. The model fit using monthly values of the
PCs of the daily predictor with a temporal coverage of
12 days for the regional component is slightly better
(ρ=0.9139, rms=0.1385, bias=0.0718, si=0.0793) than
the model fit using the PCs of the monthly SLP and
squared SLP gradients (ρ=0.8991, rms=0.1316, bias=
−0. 0092, si=0.0517).

In the case of Oregon location, an optimum historical
temporal coverage of 4 days is selected (see the panels

of the right column of Fig. 4). The regional predictor
area, obtained using ESTELA method, covers only the
north hemisphere of the Pacific Ocean (see Figure 5 of
Perez et al. 2014, in this issue). The upper right panels
of Fig. 12 show the validation of the multivariate re-
gression model for an optimum historical temporal cov-
erage of 4 days at Oregon location. A good perfor-
mance of the model is obtained using the daily or
monthly values of the temporal coefficients of the pre-
dictor variability modes. The first four local monthly
wave predictor indices for the Oregon location are rep-
resented in the lower right panel of Fig. 12. The corre-
sponding EOFs of the daily predictor are represented in
the left panels of Fig. 12. The spatial domain of the
local predictor is marked.

Fig. 12 Spatial patterns of daily predictor for temporal coverage of 4 days for the regional predictor for Oregon location (left panels). Validation of the
statistical model at daily and monthly scales (upper right panels). Monthly wave predictors (lower right panel)
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5 Summary and conclusions

A method to obtain local monthly wave predictor indices has
been proposed. The method is based on the statistical relation-
ship between the atmospheric predictor, characterized by the
SLP and the squared SLP gradient fields, and the local wave
climate.

The spatial domain and the temporal coverage are the key
properties of the wave predictor. The predictor is composed of
a regional predictor, representative of the swell wave compo-
nent, and a local predictor, representative of the sea compo-
nent. The ESTELA method (Perez et al. 2014, this issue) has
been implemented to characterize the footprint of the wave
climate at a specific location of interest and to automate the
definition of the spatial domain of the predictor corresponding
to the swell wave component. The ESTELAmap also helps to
determinate the predictor local area, extended to the 1-day
energy flux travel time line. A global historical temporal
coverage for the regional predictor is required to represent
the recent history of atmospheric conditions responsible for
the swell wave component of the wave climate at the target
location. Both predictor components with different spatial
domain and temporal resolution are joined at a daily scale.
PCA is applied to identify the main variability patterns par-
ticularized to the target location. Different n-days are consid-
ered in order to obtain the best representative temporal cover-
age of the regional predictor. The optimal historical temporal
coverage of the regional predictor is obtained associated to the
best solution of a multivariate regression model, between the
daily significant wave height and the principal components of
the daily predictor. The multivariate regression is fitted using a
forward selection procedure in order to guarantee the most
important predictor PCs.

The monthly wave climate conditions are modeled apply-
ing a multivariate regression model using the monthly values
of the principal components of the daily predictor, with the
optimum historical temporal coverage for the regional predic-
tor. The selected monthly PCs for the optimum temporal
coverage are the monthly wave predictor indices for the target
location. The local monthly indices identified with this meth-
od improve the statistical model fitting of the monthly mean
significant wave height, compared with a predictor defined as
the corresponding monthly SLP and squared SLP gradients at
a regional scale. A stronger relation with the local wave
climate is obtained with these monthly indices, resulting in a
higher correlation with wave spectra. The variability patterns
associated with the indices allow a better understanding of the
origin of the complex wave fields.

We believe that the outcomes of this work can contribute to
improve the predictions of wave climate at daily and monthly
scales. In particular, the daily predictor can be applied in wave
climate projections for different CMIP5 based on statistical
downscaling (Wang et al. 2014), and the monthly predictor

could help to explain long-term morphodynamic anomalies
(Barnard et al. 2011). This statistical downscaling approach
can be used in extratropical areas. Further research is needed
to extend this method to tropical regions affected by tropical
cyclones.
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