
The WEF Nexus in LAC

WSA Water Week, Panama, May 2017

Raul Munoz Castillo INE/WSA

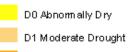
Que es el Nexo?

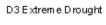
Nexus schematic with a WEF security focus (Bazilian et al. 2011).

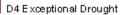
Si, peroque es el Nexo?

entonces,....que significa esto del Nexo?

U.S. Drought Monitor California

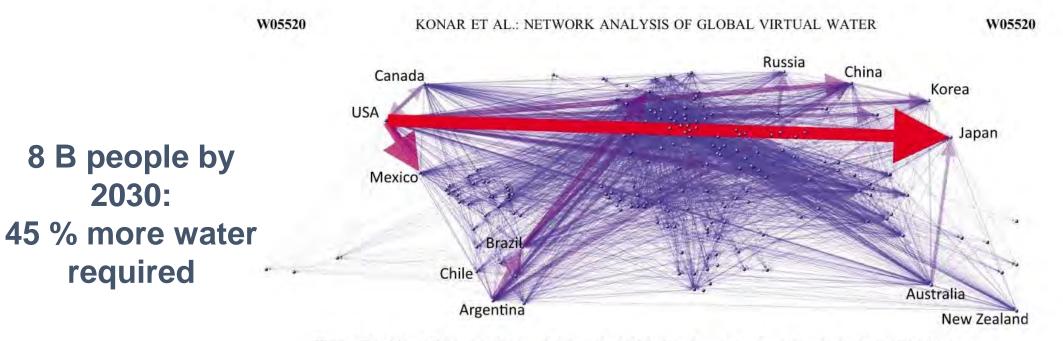

April 7, 2015


(Released Thursday, Apr. 9, 2015) Valid 7 a.m. EST


Drought Conditions (Percent Area)

		ĺ	No
		Current	0.1
	Irrigation- 80% of total human use	Last Week 3/31/2015	0.1
	95% is exported	3 Month s Ago 1/6/2015	0.0
		Start of Calendar Year 12/30/2014	0.0
		Start of Water Year 9/30/2014	0.0
		One Year Ago 48/2014	0.0
		Intensity:	
· · · · · · · · · · · · · · · · · · ·		D0 Abnom	ally (
		D1 Modera	te Di
		D2 Severe	Drou
		The Drought Mon Local conditions i for forecast states	may
		Author: Michael Brew NCDC/NOAA	
•		USDA	National

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	0.15	99.85	98.11	93.44	66.60	44.32
Last Week 331/2015	0.15	99.85	98.11	93.44	66.60	41.41
3 Month s Ago 1/6/2015	0.00	100.00	98.12	94.34	77.94	32.21
Start of Calendar Year 12302014	0.00	100.00	98.12	94.34	77.94	32.21
Start of Water Year 930/2014	0.00	100.00	100.00	95.04	81.92	58.41
One Year Ago 48/2014	0.00	100.00	99.81	95.21	68.76	23.49


ought

r focuses on broad-scale conditions. y vary. See accompanying text summary nts.

http://droughtmonitor.unl.edu/

A GLOBAL MARKET: The "Virtual Water" Network

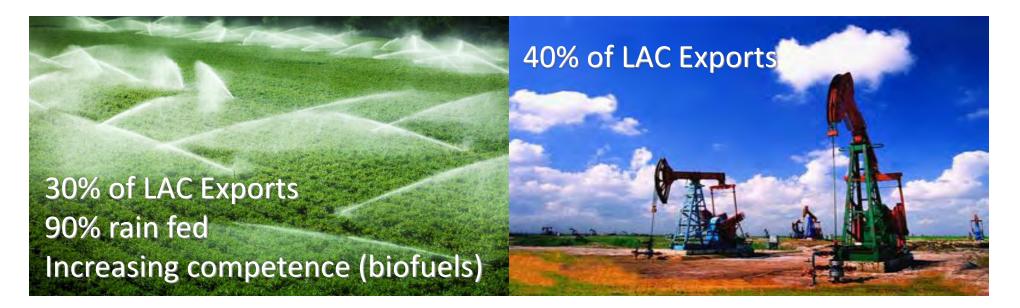


Figure 2. Map of the weighted and directed global virtual water trade network. Each point indicates a node, or nation, in the network. Bilateral trade between countries is displayed by a line between points, with an arrow indicating the direction of trade. The color and width of each line is scaled on the basis of the weight of the link it is representing. In this network, there are 166 nations that import, 151 nations that export, and 6033 links. Note that the export of virtual water from the United States to Japan is the largest link in the network, with a volume of $29.2 \times 10^9 \text{ m}^3 \text{ yr}^{-1}$, which accounts for approximately 5% of the entire volume in the network. The second largest link is that from the United States to Mexico, with a virtual water trade volume of $20.2 \times 10^9 \text{ m}^3 \text{ yr}^{-1}$, or approximately 3% of the flow volume.

In an interconnected world, water is no longer a local problem only

The importance of Nexus for LAC

Competitive **advantage** based on natural endowments: water, agriculture, and energy/minerals

Nexus in LAC

Regional **demand for water, energy, and food** is expected to **grow exponentially** as income per capita and population rise

LAC water withdrawal for energy production:

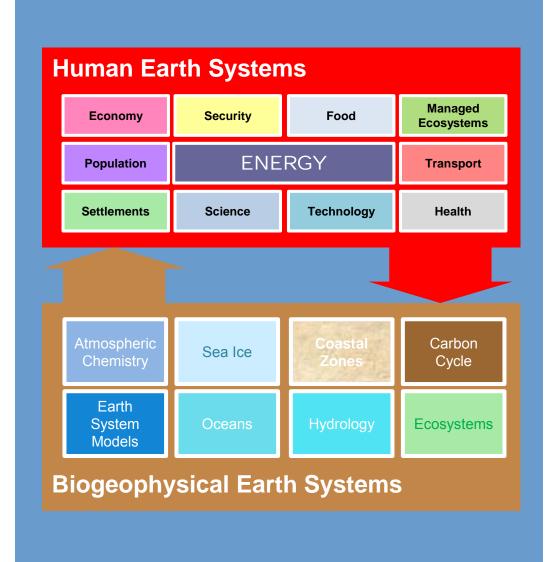
- 16 billion cubic meters in 2010
- 52 billion cubic meters in 2035

Largest & 7 times world average growth

The WEF Nexus at the IDB

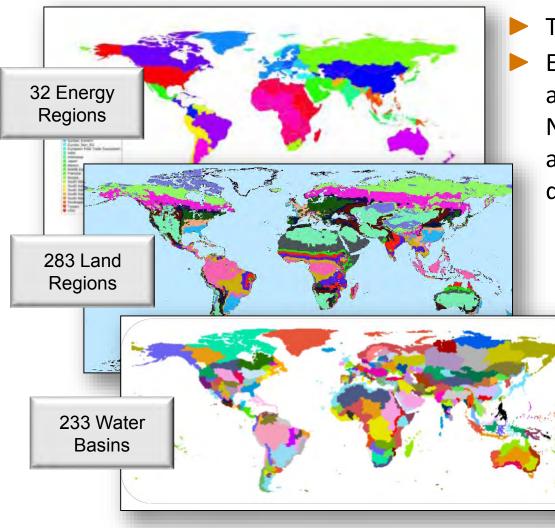
- IDB WEF Working Group (WSA/ENE/RND/CSD)
- Sample **products** from such a team
 - Modeling and visualization tools
 - IAMs (GCAM, IMAGE...)
 - MRIO, LCA,...
 - HydroBID/SWAP+GAMS
 - Constant development of tailored scenarios for water, food, and energy
 - Synergies and support to other flagship initiatives, e.g., ESCI, Extractives, Biodiversity
- From multiple booking to Integrated Portfolio of Lending (Multisectoral Approach to Countries)

Integrated Assessment Models (IAMs)


•IAMs integrate human and Earth system science.

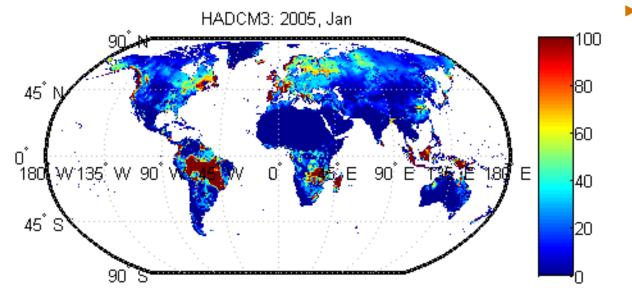
•IAMs provide insights that would be otherwise unavailable from disciplinary research.

•IAMs capture interactions between complex and highly nonlinear systems.


•IAMs provide important, sciencebased decision support tools.

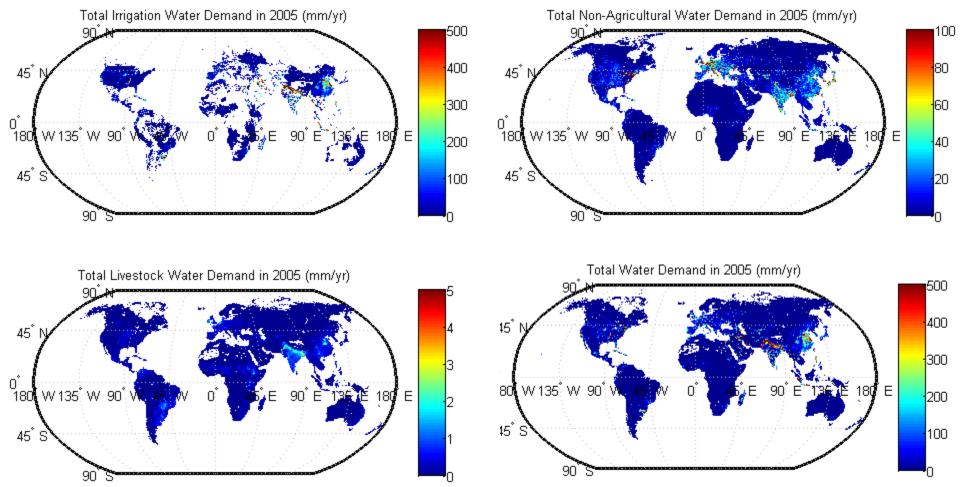
•IAMs support national, international, regional, and private-sector decisions.

The Global Change Assessment (GCAM) Model


- GCAM is a global integrated assessment model
- GCAM links Economic, Energy, Land-use, Water, and Climate systems

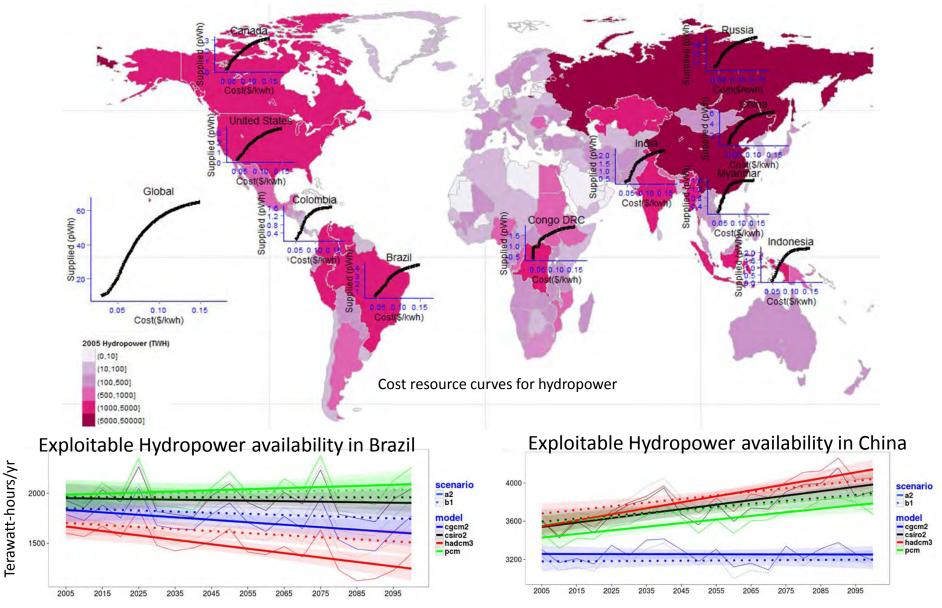
- Technology-rich model
 - Emissions of 16 greenhouse gases and short-lived species: CO_2 , CH_4 , N_2O , halocarbons, carbonaceous aerosols, reactive gases, sulfur dioxide.
 - Runs in 1-year timesteps, working on subyearly (seasonally).
 GCAM has participated in virtually every major climate/energy/economics assessment over the last 20 years

The GCAM Global Hydrologic Model

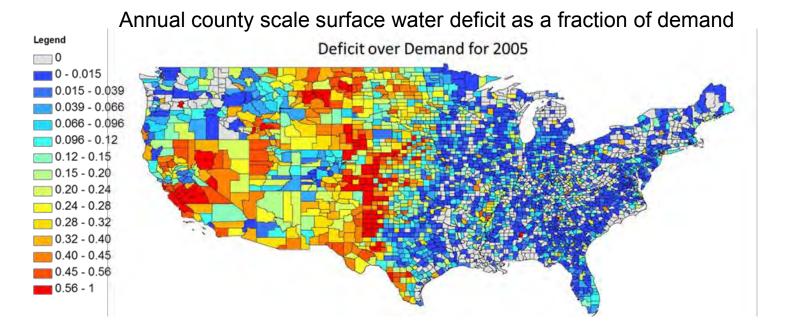


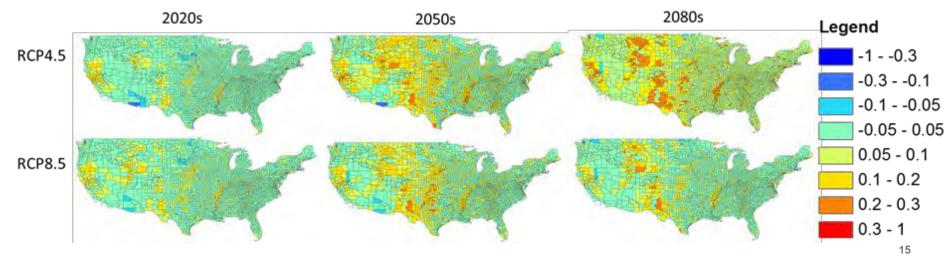
- GCAM has a global hydrologic model
- Modified River Transport Model scheme
- Simulates runoff and streamflow (1901-2100)
- Requires climate information from GCMs as inputs
- 233 basins globally
- 18 basins in the US consistent with the USGS WRRs
- Monthly temporal scale
- 0.5x0.5 degree spatial resolution

GCAM also accounts for non-renewable water sources such as fossil groundwater and desalinated water


Projecting water demands into the future

Gridded water demands can be generated by sector

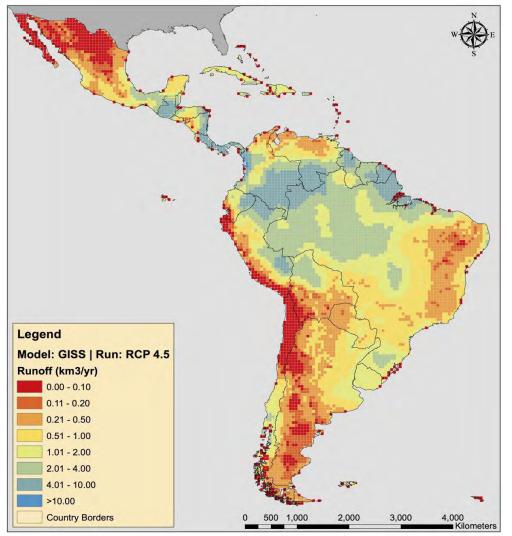

Hejazi et al. (2014). Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies, Hydrology and Earth System Sciences, 18, 2859-2883, doi:10.5194/hess-18-2859-2014


The impact of climate change on hydropower availability in Brazil and China

Zhou et al. (2015). A Comprehensive View of Global Potential for Hydro-generated Electricity.

In the USA, water deficit is projected to increase more with climate change mitigation that favors biomass

Hejazi et al. (in review). Climate mitigation exacerbates water deficits in the United States. Nature Climate Change.


ESW 2016: Regional Water Scarcity

BRA

Brazil

Annual Runoff (km³/yr) for the Latin America and Caribbean (LAC) Region

2015

Values of Demand (D) and gap between Supply (S) and Demand in the LAC Region for the Period 2015-2100; Scenario SSP2

AGRICUL	TURAL WATER D	EMAND				
-	14.4	D (km3)	D (km3)	D (km3)	D (km3)	Total Change
ISO	COUNTRY	2015	2025	2050	2100	2015-2100
ARG	Argentina	15.68	18.12	22.04	23.48	50%
BLZ	Belize	0.04	0.04	0.06	0.08	106%
BOL	Bolivia	2.86	3.78	5.28	6.40	124%
BRA	Brazil	31.70	37.38	43.78	42.89	35%
ENERGY	WATER DEMAND					
		D (km3)	D (km3)	D (km3)	D (km3)	Total Change
ISO	COUNTRY	2015	2025	2050	2100	2015-Z100
ARG	Argentina	2.53	2.92	3,55	3.79	50%
BLZ	Belize	0.01	0.01	0.02	0.02	106%
BOL	Bolivia	0.06	0.08	0.11	0.13	124%
BRA	Brazil	10.14	11.96	14.00	13.72	35%
WSS W	ATER DEMAND]		
+		D (km3)	D (km3)	D (km3)	D (km3)	Total Change
ISO	COUNTRY	2015	2025	2050	2100	2015-2100
ARG	Argentina	3.44	3.97	4,83	5.19	50%
BLZ	Belize	0.01	0.01	0.01	0.03	106%
BOL	Bolivia	0.21	0.27	0.38	0.46	124%

19.14

22.43

21.96

35%

16.23

FEW 2017-2018: Casos de Estudio- Candidatos

- Uruguay
 - Nueva Agencia de CC TC de CCs
 - Agricultura
- Sao Paulo- Brasil
 - Crisis de agua 2015: Competencia Sectorial-Espacial (SP-RJ)
 - TC WSA- Secretaria Agua-Energia- SABESP
 - Colaboracion ENE
- Peru
 - Cuencas vertiente Pacifico: Desafios seguridad hidrica y planes de inversion sectoriales
 - ANA: Planes de Cuenca- HydroBID
 - Agricultura

What is next?: Downscaling capabilities

Caribbean

South America

370

Central America

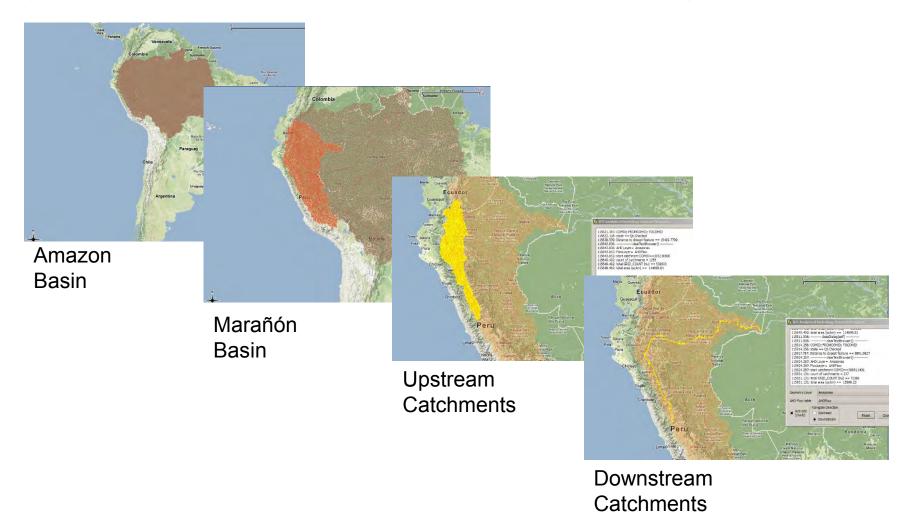
- 33,000 catchments and stream segments
- Average catchment area: 84 km²
- Average stream segment length: 10 km

South America

- 193,000 catchments and stream segments
- Average catchment area: 92 km²
- Average stream segment length: 11 km

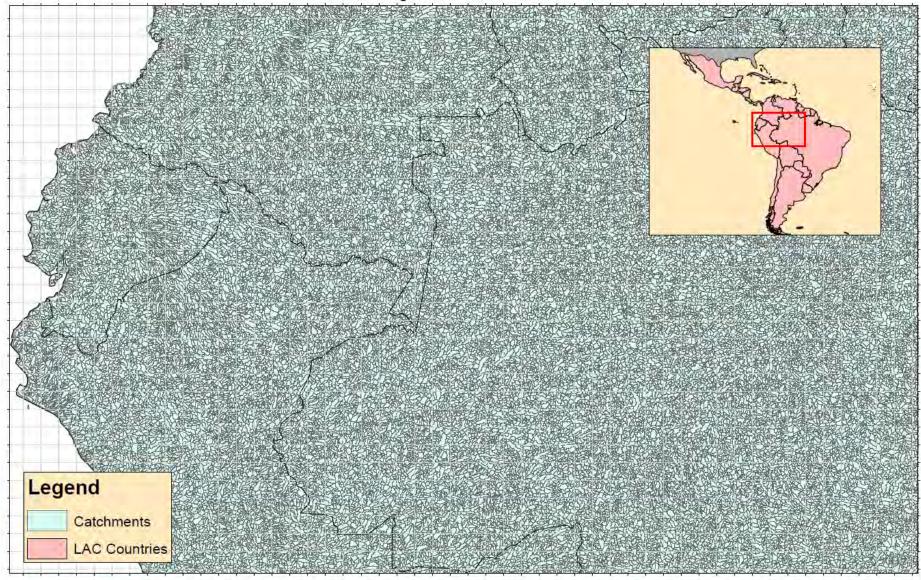
It delineates more than 230,000 basins with their respective river segments along LAC

Central America

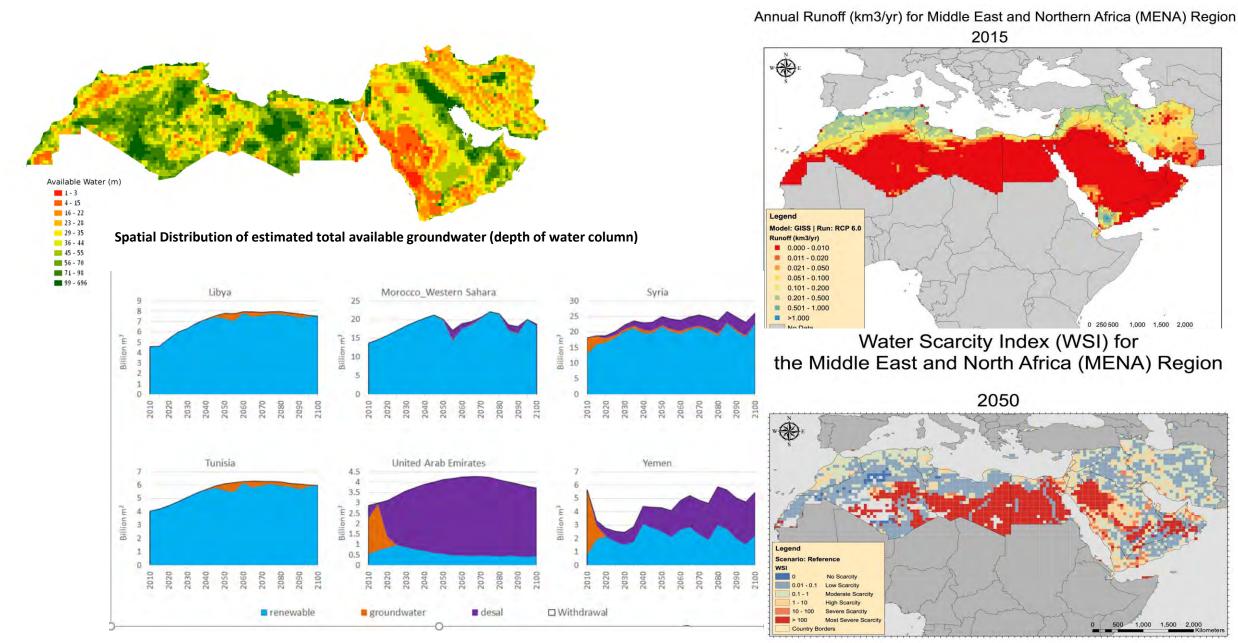


- 3,300 catchments and stream segments
- Average catchment area: 72 km²
- Average stream segment length: 11 km

HYDRO-BID


What is next?: Downscaling capabilities

Hydro-BID allows multiple scale water resources analysis



What is next?: Downscaling capabilities

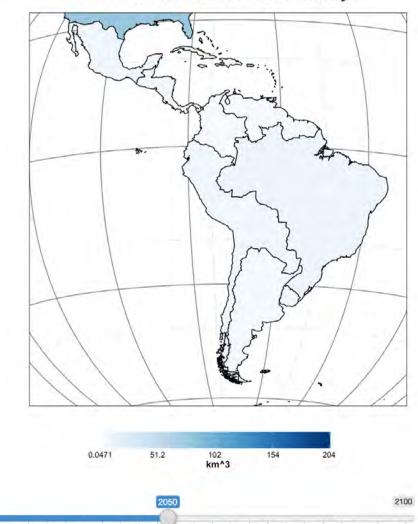
LAC Sub-Region: Western South America

What is next?: Groundwater

What is next?: Dashboard

GCAM Dashboard

Browse	idb_ndc_climate.dat	
100	Upload complete	
elect Scena	ario to Plot	
Reference_	NoClimateImpacts -	
elect Query	to Plot	Include
Water with	drawals for electricity -	Spatial
		Queries


Map View Time View

Project Info

Year

1990

Water withdrawals for electricity

GCAM Dashboard

Virtual Scarce Water Flows: Ethanol Exports

Pernambuco

Maranhao

Baila

Tocantins

Rondonia

Amatonas

Acre

Distrito Federal

Sereipe

Nato Glosso

Espiritusanto

Riode Janeiro

Rio Grande do Sul

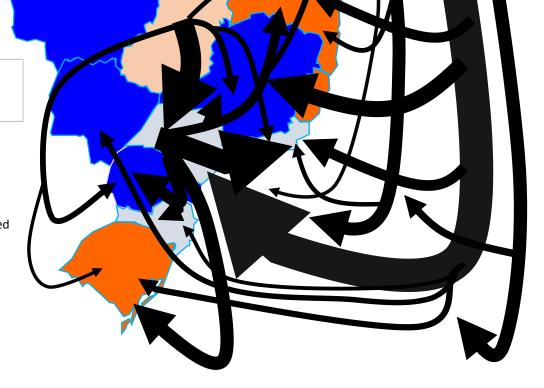
700

600

500

400

300


200

100

0

GREEN SCARCE WATER **ETHANOL**

Production based Consumption based

SIDB Inter-American Development Bank

Gracias!

raulmu@iadb.org