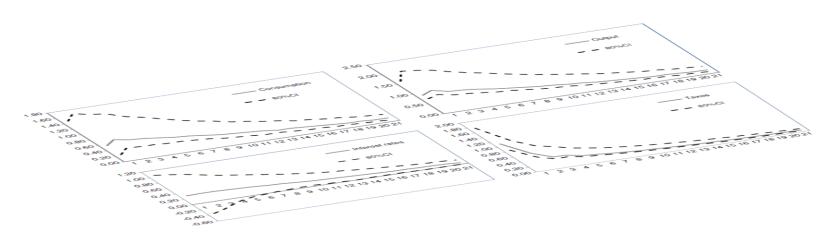
CURSO: ECONOMETRÍA Y ANÁLISIS DE POLÍTICAS FISCALES

INSTRUCTOR: HORACIO CATALÁN ALONSO

Análisis Estructural modelo VAR

Análisis Impulso-Respuesta



Modelo general del VAR(1)

$$\mathbf{Y_t} = \mathbf{AY_{t-1}} + \mathbf{U_t}$$

Tiene una solución general

$$\mathbf{Y_t} = \sum_{i=0}^{s-1} \mathbf{A}^i \mathbf{u}_{t-i}$$
shock

$$\begin{bmatrix} pibp_t \\ engp_t \\ co2p_t \end{bmatrix} = \sum_{i=0}^{\infty} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}^{i} \begin{bmatrix} u_{pib} \\ u_{eng} \\ u_{co2} \end{bmatrix}$$

$$\begin{bmatrix} pibp_t \\ engp_t \\ co2p_t \end{bmatrix} = \begin{bmatrix} 1.07 & -9.4 & 156.8 \\ 0.00006 & .53 & .073 \\ 0.0008 & -.13 & .86 \end{bmatrix} \begin{bmatrix} u_{pib} \\ u_{eng} \\ u_{co2} \end{bmatrix}$$

Se define un vector donde se espcifica el shock

$$\begin{bmatrix}
pibp_t \\
engp_t \\
co2p_t
\end{bmatrix} = \begin{bmatrix}
1.07 & -9.4 & 156.8 \\
0.00006 & .53 & .073 \\
0.00008 & -.13 & .86
\end{bmatrix} \begin{bmatrix}
0.5 \\
0 \\
0
\end{bmatrix}$$

El resultado es la respuesta del sistema ante un shock en la ecuación del PIB

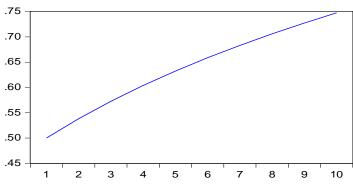
En el periodo t=1

$$\begin{bmatrix} pibp_t \\ engp_t \\ co2p_t \end{bmatrix} = \begin{bmatrix} 1.07 & -9.4 & 156.8 \\ 0.00006 & .53 & .073 \\ 0.0008 & -.13 & .86 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.535 \\ 0.0003 \\ 0.004 \end{bmatrix}$$

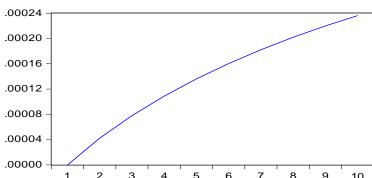
En el periodo t=2

$$\begin{bmatrix} pibp_t \\ engp_t \\ co2p_t \end{bmatrix} = \begin{bmatrix} 1.07 & -9.4 & 156.8 \\ 0.00006 & .53 & .073 \\ 0.0008 & -.13 & .86 \end{bmatrix} \begin{bmatrix} 0.535 \\ 0.0003 \\ 0.004 \end{bmatrix} = \begin{bmatrix} 0.535 \\ 0.0003 \\ 0.004 \end{bmatrix}$$

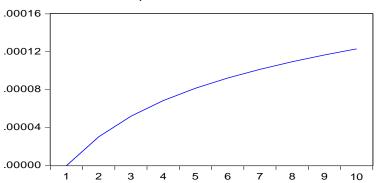
Periodo	PIBP	CO2P	ENGP
1	0.5	0	0
2	0.53831	0.0000422	0.0000303
3	0.572656	0.0000779	0.0000520
4	0.603825	0.0001090	0.0000685
5	0.632371	0.0001360	0.0000815
6	0.658706	0.0001600	0.0000922
7	0.683146	0.0001820	0.0001010
8	0.705947	0.0002020	0.0001090
9	0.727318	0.0002200	0.0001170
10	0.74744	0.0002360	0.0001230



Response of CO2P to Shock1



Response of ENGP to Shock1



Ortogonalización de los errores

El principal problema del análisis impulso-repuesta es que el "shock" ocurre únicamente en una variable a la vez. Este supuesto se puede mantener si las variables son independientes

Si no son independientes se puede considerar que el término de error contiene otros efectos de otras variables no consideradas en el sistema

La correlación entre los términos de error, indica que el shock en una variable puede ser acompañado por el shock de otra variable

Solución Cholesky

La matriz A se define como una matriz triangular inferior que incluye la relación contemporánea entre las variables

La matriz B es una matriz diagonal, definida con la desviación estándar de cada una de las series de errores del VAR

El análisis impulso-respuesta se puede calcular de la siguiente forma, para un VAR(1) con 3 variables

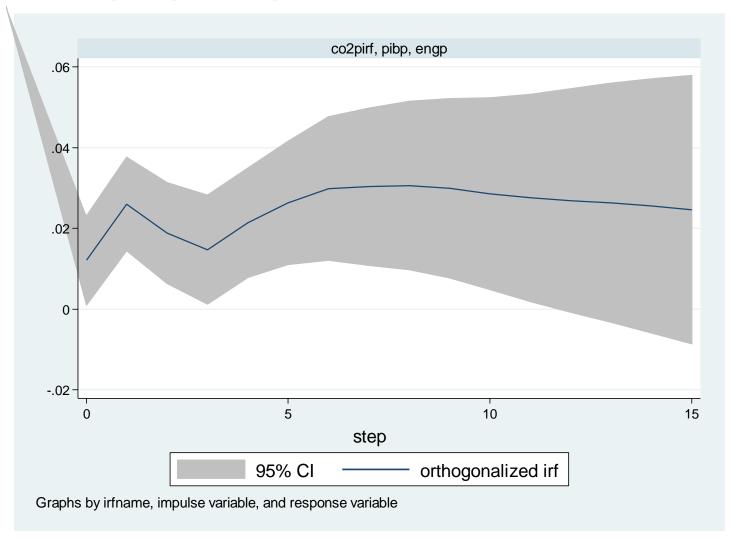
$$\begin{bmatrix} y_t \\ x_t \\ z_t \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}^i \begin{bmatrix} p_{11} & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \begin{bmatrix} \varepsilon_{yt} \\ \varepsilon_{xt} \\ \varepsilon_{zt} \end{bmatrix}$$

Parámetros a estimar

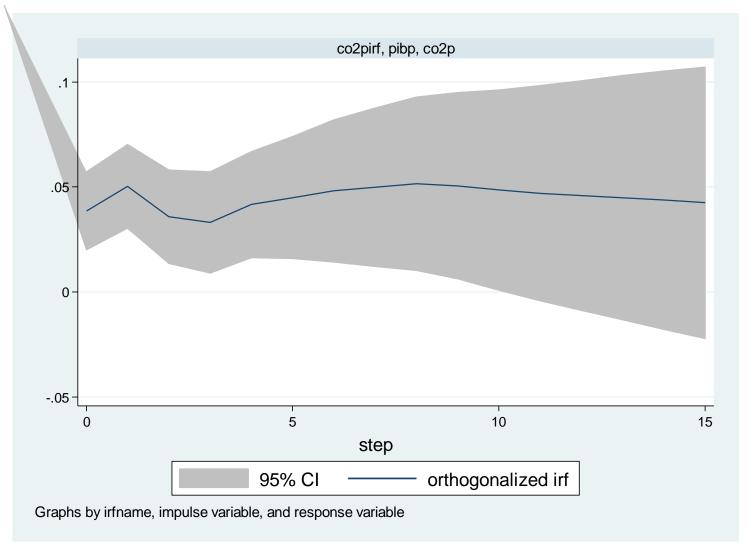
$$\mathbf{P} = \mathbf{A}^{-1}\mathbf{B}$$

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ a_{21} & 1 & 0 \\ a_{31} & a_{32} & 1 \end{bmatrix}^{-1} \begin{bmatrix} \sigma_{11} & 0 & 0 \\ 0 & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{33} \end{bmatrix}$$
 Desviación estándar de los errores

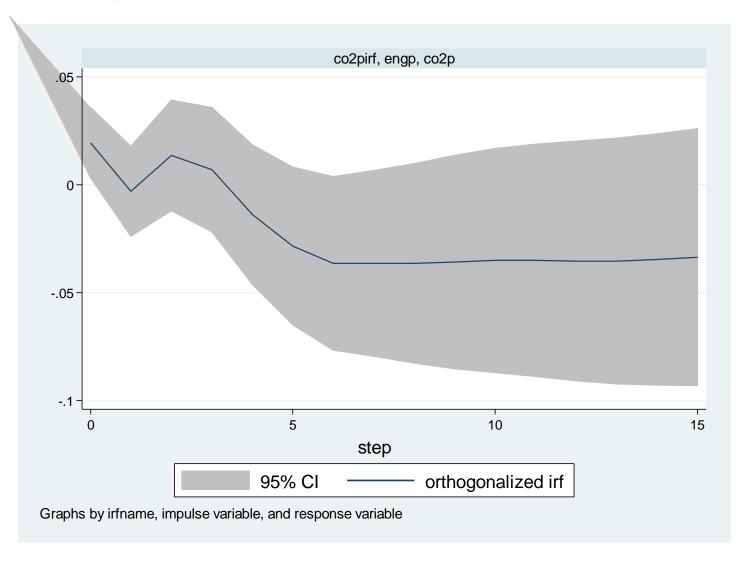
Respuesta del consumo de energía per cápita a un shock del pib per cápita



Respuesta de emisiones de CO2 per cápita a un shock del consumo de energía



Respuesta de emisiones de CO2 per cápita a un shock del energía per cápita



irf table irf, irf(co2pirf) impulse(pibp) response(engp co2p)

	(1)	(1)	(1)	(2)	(2)	(2)
step	irf	Lower	Upper	irf	Lower	Upper
0	0	0	0	0	0	0
1	.000121	.000057	.000184	.000198	.000085	.000311
2	.000032	000046	.000111	.000061	000078	.0002
3	.000021	000074	.000117	.000094	00008	.000268
4	.000082	-8.6e-06	.000173	.00014	000024	.000305
5	.000119	.00002	.000217	.000168	000023	.000358
5	.000164	.000047	.000281	.000223	-3.5e-06	.00045
7	.000184	.000048	.000319	.000263	-5.5e-07	.000527
3	.000194	.000045	.000343	.000288	-6.8e-06	.000584
9	.00019	.000028	.000351	.000288	000036	.000612
10	.00018	5.5e-06	.000354	.000278	000073	.00063
11	.000174	000016	.000364	.000272	000108	.000652
12	.00017	000035	.000376	.000268	000139	.000675
L3	.000168	000053	.000389	.000265	000169	.000699
L 4	.000164	000071	.000399	.000261	000198	.000719
15	.000159	00009	.000407	.000255	000227	.000738

95% lower and upper bounds reported

- (1) irfname = co2pirf, impulse = pibp, and response = engp
- (2) irfname = co2pirf, impulse = pibp, and response = co2p

Modelo VAR: Descomposición de la Varianza

Determinar la proporción de la variabilidad del error de pronóstico de la variables del VAR $(y_1, y_2,...,y_n)$ en t+s periodos basados en la información disponible en el periodo t

Variabilidad de los shocks $(e_1, e_2, ..., e_n)$ entre los periodo ty t+s

Determina la proporción de la varianza del error de pronóstico que se explica por las innovaciones de cada variable explicativa

El modelo VAR si es estacionario se puede representar como un proceso de media móvil

$$\mathbf{Y_t} = \sum_{i=0}^{\infty} \mathbf{A^i PP^{-1}U_{t-i}} = \sum_{i=0}^{\infty} \mathbf{\Phi}_i \mathbf{\epsilon}_{t-i}$$

La representación de media móvil permite definir el error de pronóstico de h-periodos

$$\mathbf{Y}_{\mathbf{t}+h} - \mathbf{Y}_{\mathbf{t}+h|t} = \mathbf{\Phi}_0 \mathbf{\varepsilon}_{t+h} + \mathbf{\Phi}_1 \mathbf{\varepsilon}_{t+h-1} + \dots + \mathbf{\Phi}_{h-1} \mathbf{\varepsilon}_{t+1}$$

$$\mathbf{Y_t} = \sum_{i=0}^{\infty} \mathbf{A^i PP^{-1}U_{t-i}} = \sum_{i=0}^{\infty} \mathbf{\Phi}_i \mathbf{\epsilon}_{t-i}$$

$$\mathbf{Y}_{t} = \sum_{i=0}^{\infty} (\mathbf{A}^{i} \mathbf{P}) (\mathbf{P}^{-1} \mathbf{U}_{t-i}) = \sum_{i=0}^{\infty} \mathbf{\Phi}_{i} \mathbf{\varepsilon}_{t-i}$$

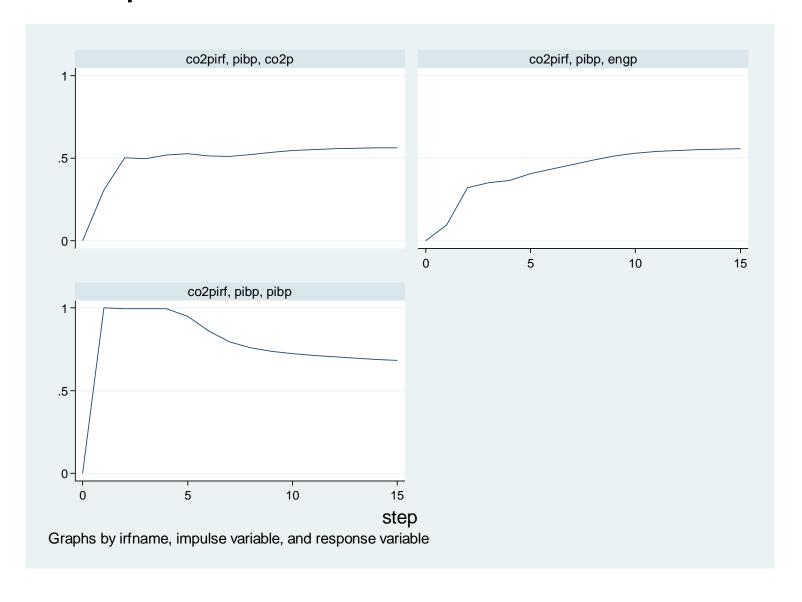
$$\mathbf{\varepsilon}_{t-i} = \left(\mathbf{P}^{-1}\mathbf{U}_{\mathbf{t}-\mathbf{i}}\right)$$

$$Var(\mathbf{\varepsilon}_{t-i}) = \mathbf{P}^{-1}Var(\mathbf{U}_{t-i})\mathbf{P}^{-1} = \mathbf{I}$$

irf table fevd, noci impulse(pibp) response(pibp engp co2p)

	(1)	(2)	(3)
step	fevd	fevd	fevd
0	0	0	0
1	1	.094956	.306484
2	.996286	.321444	.500934
3	.996378	.351304	.497591
4	.995819	.364521	.519464
5	.947651	.406099	.527817
6	.860442	.433783	.513891
7	.794292	.460312	.511264
8	.758462	.487809	.521485
9	.738209	.511972	.534476
10	.724566	. 529386	.544937
11	.714131	.54016	.552125
12	.705	. 546593	.556886
13	.696713	.55074	.559875
14	.689411	.553745	.561871
15	.683402	.556281	. 563569

Descomposición de la Varianza



Causalidad en el sentido de Granger

"El futuro no puede causar el pasado."

Granger (1969)

"Yt en un período causa Xt en el siguiente período. Si la distribución de probabilidad, de un período adelante de la predicción condicional de Xt+1, en toda la información presente y pasada es diferente de la distribución de probabilidad cuando la información del pasado de Yt es omitida."

Granger

- En el trabajo empírico nos interesa saber el <u>efecto</u> causal de alguna variable <u>x</u> sobre otra variable <u>y</u>.
 - Un aumento del agregado monetario <u>causa</u> un aumento en la inflación?
 - Un aumento del gasto público <u>causa</u> una expansión del PIB?
 - La actividad económica causa las emisones de CO2

La idea básica de la prueba de NO causalidad en el sentido de Granger, es determinar si la variable X causa a Y. Entonces los cambios en X anteceden a los cambios en la variable Y

$$CO2_t = \alpha_0 + \alpha_1 CO2_{t-1} + \alpha_2 CO2_{t-2} +$$

$$+\beta_1 PIB_{t-1} + \beta_2 PIB_{t-2} + u_t$$

$$H_0$$
: $\beta_1 = \beta_2 = 0$

PIB no causa en el sentido de Granger a CO2

$$H_0: \beta_1 \neq 0, \beta_2 \neq 0$$

PIB causa en el sentido de Granger a CO2

R	Model desidual	SS 20.440085 .387977408 20.8280624	df 4 43 47	.00	MS 002125 902273 150264		R-squared Adj R-squared	= 566.35 = 0.0000 = 0.9814
	co2p	Coef.	Std.	Err.	t	P> t	[95% Conf.]	Interval]
	co2p L1. L2.	.3111842 .5875177	.1905 .182		1.63 3.22	0.110 0.002	0731958 .2191427	.6955643 .9558927
	pibp L1. L2.	.0002167 0001999	.0000		2.90 -2.62	0.006 0.012	.0000662 0003541	.0003673 0000458
	_cons	. 2411325	.0914	147	2.64	0.012	.0567772	.4254879

. test 1.pib 12.pibp

```
(1) L.pibp = 0
(2) L2.pibp = 0
F(2, 43) = 4.22
Prob > F = 0.0213
```

Se aplica una prueba F, asumiendo una restricción en los coeficientes de las variables que nos interesan En este caso se rechaza la hipótesis nula por lo tanto El PIBp causa a las emisiones CO2p

regress pibp 1.pibp 12.pibp 1.co2p 12.co2

. test 1.co2p 12.co2

```
(1) L.co2p = 0

(2) L2.co2 = 0

F(2, 43) = 2.88
Prob > F = 0.0669
```

Las emisiones de CO2p NO causan al PIBp

CAUSALIDAD DE GRANGER POR BLOQUES

$$\begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} \alpha_{10} \\ \alpha_{20} \end{pmatrix} + \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} \begin{pmatrix} y_{1t-1} \\ y_{2t-1} \end{pmatrix} + \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} \begin{pmatrix} y_{1t-2} \\ y_{2t-2} \end{pmatrix}$$

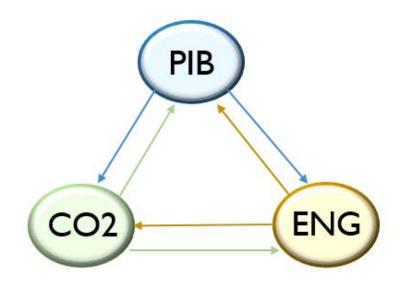
$$+ \begin{pmatrix} \delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22} \end{pmatrix} \begin{pmatrix} y_{1t-3} \\ y_{2t-3} \end{pmatrix} + \begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix}$$

Hipótesis	Restricción
Rezagos de y _{1t} no explican a y _{2t}	$B_{21}=0, \gamma_{21}=0 \delta_{21}=0$
Rezagos de y _{1t} no explican a y _{1t}	$B_{11}=0, \gamma_{11}=0 \delta_{11}=0$
Rezagos de y _{2t} no explican a y _{1t}	$B_{12}=0, \gamma_{12}=0 \delta_{12}=0$
Rezagos de y _{2t} no explican a y _{2t}	$B_{22}=0, \gamma_{22}=0 \delta_{22}=0$

Granger causality Wald tests

Equation	Excluded	chi2	df P	df Prob > chi2	
pibp	engp	14.381	3	0.002	
pibp	co2p	7.5082	3	0.057	
pibp	ALL	14.554	6	0.024	
engp	pibp	27.794	3	0.000	
engp	co2p	18.26	3	0.000	
engp	ALL	37.459	6	0.000	
co2p	pibp	17.093	3	0.001	
co2p	engp	9.8702	3	0.020	
co2p	ALL	23.047	6	0.001	

Así que relación causal entre crecimiento, emisiones y energía puede ser en diferentes direcciones



Feedback. Cualquier política de conservación afectará negativamente a la producción, mientras que un aumento en la producción aumentará en consumo de energía y el nivel de emisiones

CURSO: ECONOMETRÍA Y ANÁLISIS DE POLÍTICAS FISCALES

INSTRUCTOR: HORACIO CATALÁN ALONSO

Análisis Estructural modelo VAR

