

"Elasticidades ingreso y precio de la demanda de electricidad y gasolinas en El Salvador: Análisis con micro-datos"

Elaborado por:

Luis Miguel Galindo, Luis Adalberto Aquino, Karina Caballero, Alirio Alfonso Hernández

Taller Políticas Públicas frente al Cambio Climático en América Latina y el Caribe

Ciudad de Guatemala

22 de junio de 2017

Índice

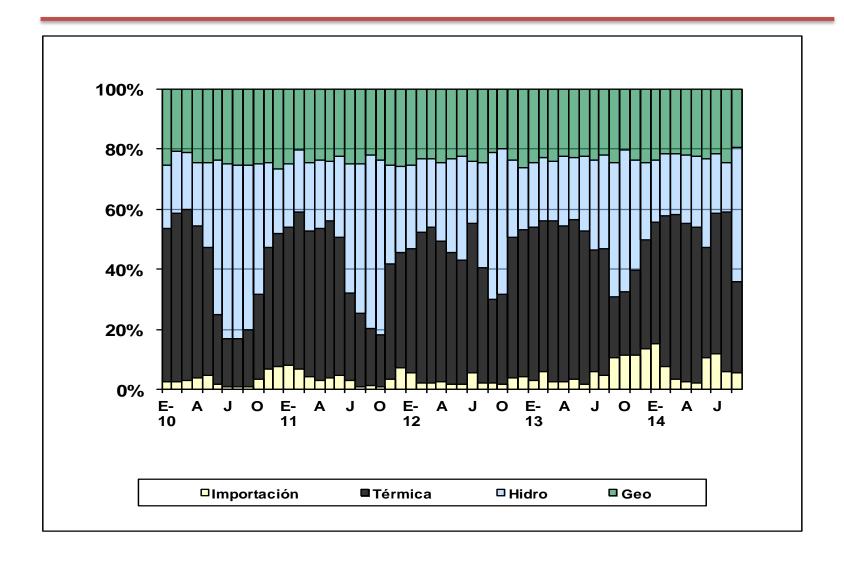
- 1. Introducción
- 2. Antecedentes
- 3. Marco teórico: Curvas de Engel y modelos de demanda casi ideales lineales y cuadráticos
- 4. Base de datos
- 5. Evidencia empírica: El caso de El Salvador
 - 5.1 Demanda de electricidad y gasolinas: Series de tiempo
 - 5.2 Demanda de electricidad y gasolinas: Datos de sección cruzada
 - 5.2.1 El consumo de gasolinas
 - 5.2.2 El consumo de electricidad
- 6. Consideraciones finales y recomendaciones

1. Introducción

☐ El consumo de electricidad y gasolinas es un insumo fundamental en las economías modernas
☐ Externalidades negativas: contaminación atmosférica, costos relacionados con accidentes o congestión vehicular
☐ Efectos colaterales: competitividad, finanzas públicas, inflación, etc.
☐ Políticas públicas
☐ Aprovechar bases de datos

Rama de actividad económica Gasolina y Electricidad en los costos de producción En porcentaje del VBP

En porcentaje del V		
1 CASE ORO	Combustibles 3.0	Electricidad 1.2
1. CAFE ORO 2. ALGODON	2.8	0.7
3. GRANOS BASICOS	0.4	0.7
4. CAÑA DE AZUCAR	1.4	0.0
5. OTRAS PRODUCCIONES AGRICOLAS	6.0	0.0
6. GANADERIA	0.9	0.1
7. AVICULTURA	0.8	0.8
8. SILVICULTURA	0.0	0.0
9. PROD. DE LA CAZA Y LA PESCA	5.5	0.5
10. PROD. DE LA MINERIA	2.7	2.0
11. CARNE Y SUS PRODUCTOS	0.4	0.2
12. PRODUCTOS LACTEOS	0.5	0.0
13. PROD. ELABORADOS DE LA PESCA	0.2	0.0
14. PROD. DE MOLINERIA Y PANADERIA	0.7	0.6
15. AZUCAR	13.4	9.7
16. OTROS PROD. ALIM. ELABORADOS	3.6	2.5
17. BEBIDAS	3.0	1.4
18. Tabaco Elaborado	0.0	0.0
19. TEXTILES Y ART. CONFEC. DE MAT. TEXT.	5.1	9.7
20. PRENDAS DE VESTIR	1.7	1.2
21. CUERO Y SUS PRODUCTOS	1.7	1.9
22. MADERA Y SUS PRODUCTOS	1.6	0.7
23. PAPEL, CARTON Y SUS PRODUCTOS	0.2	0.1
24. PROD. DE LA IMPRENTA Y DE IND. CONEX.	0.5	1.0
25. QUIMICA DE BASE Y ELABORADOS	1.5	1.3
26. PROD. DE LA REFINACION DE PETROLEO	2.2	0.0
27. PROD. DE CAUCHO Y PLASTICO	2.2	4.6
28. PROD. MINERALESS NO METALICOS ELAB.	15.5	7.3
29. PROD. METALICOS DE BASE Y ELAB.	2.2	2.2
30. MAQUINARIA, EQUIPOS Y SUMINISTROS	1.9	1.3
31. MATERIAL DE TRANSP. Y MANUF. DIVERSAS	1.4	2.1
32. ELECTRICIDAD	25.6	0.4
33. AGUA Y ALCANTARILLADOS	2.6	46.2
34. CONSTRUCCION	2.9	0.1
35. COMERCIO	2.7	1.0
36. RESTAURANTES Y HOTELES	0.8	0.9
37. TRANSP. Y ALMACENAMIENTO	18.6	0.3
38. COMUNICACIONES	2.0	2.6
39. BANCOS, SEGUROS, OTRAS INST. FINANC.	0.0	0.5
40. BIENES INMUEBLES Y SERV. PRESTADOS	1.5	0.6
41. ALQUILERES DE VIVIENDA	0.0	0.0
42. SERV. COMUNALES, SOCIALES Y PERS.	3.3	1.6
43. SERVICIOS DOMESTICOS	0.0	0.0
44. SERVICIOS DEL GOBIERNO	1.1	2.0


Las industrias demandan insumos de Gasolina y de Electricidad en sus procesos de producción

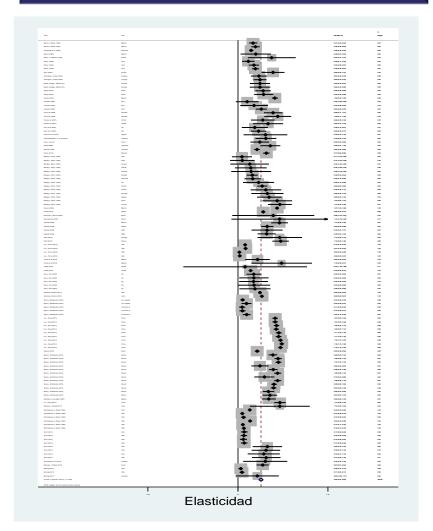
Gasolina y Electricidad en relación al consumo intermedio de cada rama En porcentaje

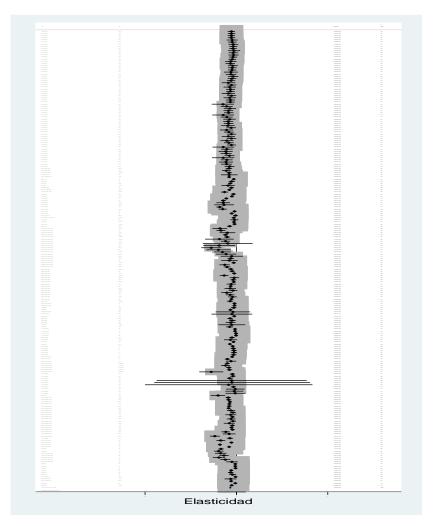
En porcentaje		
	Combustibles	Electricidad
1. CAFE ORO	13.9	5.6
2. ALGODON	5.8	1.5
3. GRANOS BASICOS	1.2	0.0
4. CAÑA DE AZUCAR	2.4	0.0
5. OTRAS PRODUCCIONES AGRICOLAS	39.5	0.0
6. GANADERIA	2.7	0.4
7. AVICULTURA	1.2	1.2
8. SILVICULTURA	0.0	0.0
9. PROD. DE LA CAZA Y LA PESCA	11.6	1.1
10. PROD. DE LA MINERIA	8.4	6.3
11. CARNE Y SUS PRODUCTOS	0.8	0.3
12. PRODUCTOS LACTEOS	0.9	0.0
13. PROD. ELABORADOS DE LA PESCA	0.3	0.0
14. PROD. DE MOLINERIA Y PANADERIA	1.4	1.2
15. AZUCAR	19.1	13.8
16. OTROS PROD. ALIM. ELABORADOS	6.7	4.7
17. BEBIDAS	9.2	4.1
18. Tabaco Elaborado	0.0	0.0
19. TEXTILES Y ART. CONFEC. DE MAT. TEXT.	6.4	12.2
20. PRENDAS DE VESTIR	2.9	2.1
21. CUERO Y SUS PRODUCTOS	3.3	3.8
22. MADERA Y SUS PRODUCTOS	4.5	2.1
23. PAPEL, CARTON Y SUS PRODUCTOS	0.3	0.1
24. PROD. DE LA IMPRENTA Y DE IND. CONEX.	1.1	2.1
25. QUIMICA DE BASE Y ELABORADOS	2.4	2.0
26. PROD. DE LA REFINACION DE PETROLEO	4.1	0.0
27. PROD. DE CAUCHO Y PLASTICO	3.6	7.5
28. PROD. MINERALESS NO METALICOS ELAB.	25.7	12.2
29. PROD. METALICOS DE BASE Y ELAB.	3.7	3.8
30. MAQUINARIA, EQUIPOS Y SUMINISTROS	3.7	2.7
31. MATERIAL DE TRANSP. Y MANUF. DIVERSAS	3.4	5.3
32. ELECTRICIDAD	49.0	0.8
33. AGUA Y ALCANTARILLADOS	3.2	57.8
34. CONSTRUCCION	5.7	0.3
35. COMERCIO	10.8	3.8
36. RESTAURANTES Y HOTELES	2.8	3.1
37. TRANSP. Y ALMACENAMIENTO	46.3	0.6
38. COMUNICACIONES	4.0	5.3
39. BANCOS, SEGUROS, OTRAS INST. FINANC.	0.2	2.3
40. BIENES INMUEBLES Y SERV. PRESTADOS	8.5	3.7
41. ALQUILERES DE VIVIENDA	0.0	0.0
42. SERV. COMUNALES, SOCIALES Y PERS.	13.1	6.4
43. SERVICIOS DOMESTICOS	0.0	0.0
44. SERVICIOS DEL GOBIERNO	3.1	5.6

Como proporción de los Insumos Totales de cada rama, tanto la Gasolina como la Electricidad son relevantes para algunas industrias

Generación de Energía Eléctrica por Tipo de fuente Miles de KWH

2. Antecedentes


- ☐ Analizar los efectos potenciales del precio del petróleo en la economía de El Salvador.
- Disponibilidad de datos
- Proyecto de modelación en desarrollo (MIMPRO)
- Discusión más general de los resultados


Elasticidades

Ingreso OCDE: 0.55

América Latina: 0.69

Precio OCDE: -0.41 América Latina: -0.31

Fuente: Comisión Económica para América Latina y el Caribe (CEPAL), sobre la base de la revisión de articulos internacionales.

- Curvas de gasto de Engel
- Modelos de demanda casi ideales (AIDS)
- Modelos de demanda casi ideales cuadráticos (QUAIDS)

(Deaton y Muellbauer, 1980; Banks *et al.*, 1997; Varian, 1993); (Banks *et al.*, 1997, Fell *et al.*, 2012; Blundell *et al.*, 1993; Blundell y Preston, 1998).

$$(1) w_i = \varphi_i + \beta_{ij} \ln x_i + u_i$$

(2)
$$w_i = \varphi_i + \beta_{ij} \ln x_i + \theta_{ij} (\ln x_i)^2 + u_i$$

(3)
$$w_i = \varphi_i + \pi_i z_i + \beta_{ij} \ln x_i + \theta_{ij} (\ln x_i)^2 + u_i$$

Con: $E(u_i|z_i, lnx) = 0 \ y \ var(u_i|z_i, lnx) = \sigma_j^2(z_i, lnx_i)$

Bien de lujo con: $\beta_i > 0$ Bien necesario con $\beta_i < 0$

Modelos econométricos AIDS y QUAIDS

(5)
$$w_i = \left(\frac{p_i q_i}{x}\right) = \alpha_i + \beta_i \ln(x_i) + \sum_{k=1}^k \gamma_{ih} \ln p_{ihk} + \theta_{hj} z_{hk} + u_i$$

(6)
$$w_i = \left(\frac{p_i q_i}{x}\right) = \alpha_i + \beta_i \ln(x_i) + \delta_i \ln(x)^2 + \sum_{k=1}^k \gamma_{ik} \ln p_{ikk} + \theta_{hj} z_{hk} + u_i$$

Elasticidades ingreso del gasto para los modelos AIDS y QUAIDS

$$\epsilon_u = \frac{\beta_i}{w_i} + 1$$

$$\in_{c} = (\beta_{i} + 2\delta_{i})/s_{i}^{h} + 1$$

Elasticidades precio sin compensar (\in_{ij}^u) y compensadas (\in_{ij}^c)

(9)
$$\epsilon_{ij}^{u} = \frac{\gamma_{ij}}{w_i} - \beta_i \frac{w_j}{w_i} - \delta_{ij}$$

$$\epsilon_{ij}^{c} = \frac{\gamma_{ij}}{w_i} - w_i - \delta_{ij}$$

donde δ_{ij} es el delta de Kronecker que toma el valor de 1 si i=j y 0 de otro modo

Precios

Índice de precios de Stone (1954):

$$\ln p^*_{ih} = \sum_{j}^{m} \overline{w_j} \ln p^*_{j}$$

Donde $\overline{w_j}$ es el promedio de la participación del gasto del rubro j y donde los rubros de consumo considerados suman 1.

Razón inversa de Mills (λ)

(12)
$$E(x|x>\alpha) = \mu + \sigma \left[\frac{\varphi\left(\frac{\alpha-\mu}{\sigma}\right)}{(1-\Phi)\left(\frac{\alpha-\mu}{\sigma}\right)} \right] = \mu + \sigma \lambda$$

Las estimaciones econométricas:

- (1) Mínimos Cuadrados Ordinarios (OLS).
- (2) Método General de Momentos (GMM) con y sin variables de control.
- (3) Método en Dos Etapas de Heckman (1979).

Variables de control:

- Consumo de electricidad: Área de residencia (urbana o rural), tipo de vivienda, número de habitaciones en la vivienda, número de aparatos electrodomésticos, edad y escolaridad del jefe de familia.
- Consumo de gasolinas: Área de residencia (urbana o rural), tipo de vivienda, edad y escolaridad del jefe de familia, el número de automóviles y motos que tiene el hogar y el gasto en transporte público.

4. Base de datos

☐ Bases de datos:	
☐ La base de datos de series de tiempo corresponde información de la OLADE (Organización Latinoamericana Energía) y de CEPAL (Comisión Económica Para América Latinel Caribe) para el período de 1970 a 2010.	de

Los datos de corte transversal son de la Encuesta Nacional de Ingreso Gasto de los Hogares (ENIGH) 2005-2006 de la Dirección General de Estadística y Censos de El Salvador con una muestra de 4,576 hogares a nivel nacional y con representatividad a nivel urbano y rural.

5. Evidencia empírica: El caso de El Salvador

☐ La demanda de electricidad y de gasolinas se especifica:

(13)
$$ce_t = \beta_0 + \beta_1 * y_t + \beta_2 pre_t + u_t$$

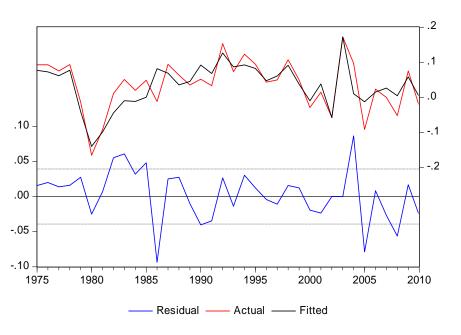
donde el consumo del energético es ce_t , el ingreso es y_t , y los precios relativos de cada energético son pre_t .

- ☐ Estimaciones econométricas basadas en el uso de vectores autorregresivos (VAR) y cointegración con el procedimiento de Johansen (1988, 1992 y 1995).
- ☐ Teorema de representación de Engle y Granger (1987) para construir los modelos de corrección de errores (MCE).

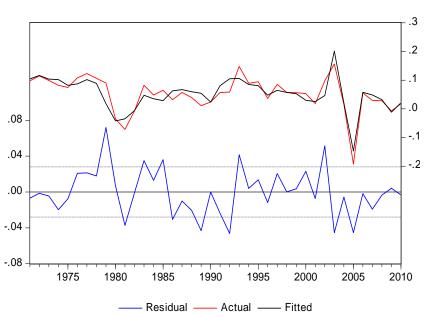
5.1 Demanda de electricidad y gasolinas: Series de tiempo

Cuadro 1.

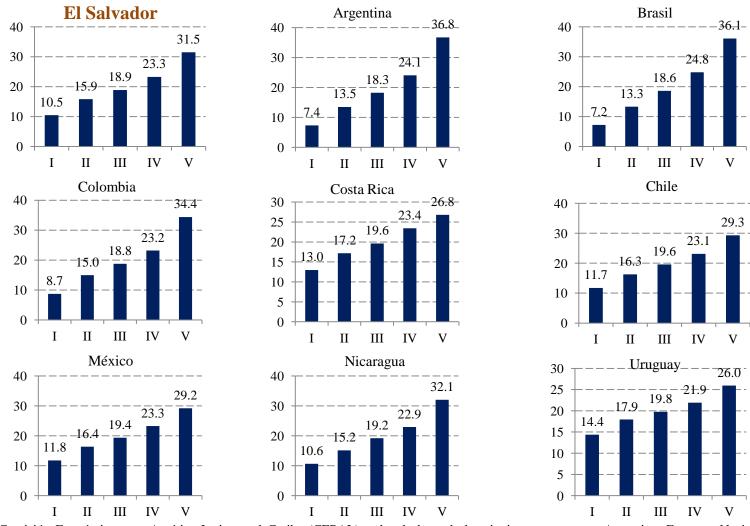
Elasticidades de largo y corto plazo para la demanda de gasolinas y electricidad de datos agregados


	Largo	plazo	Corto	plazo
	Elasticidad ingreso	Elasticidad precio	Elasticidad ingreso	Elasticidad precio
Electricidad	0.879	-0.298	0.706	-0.043
Gasolinas	1.010	-0.341	0.509	-0.170

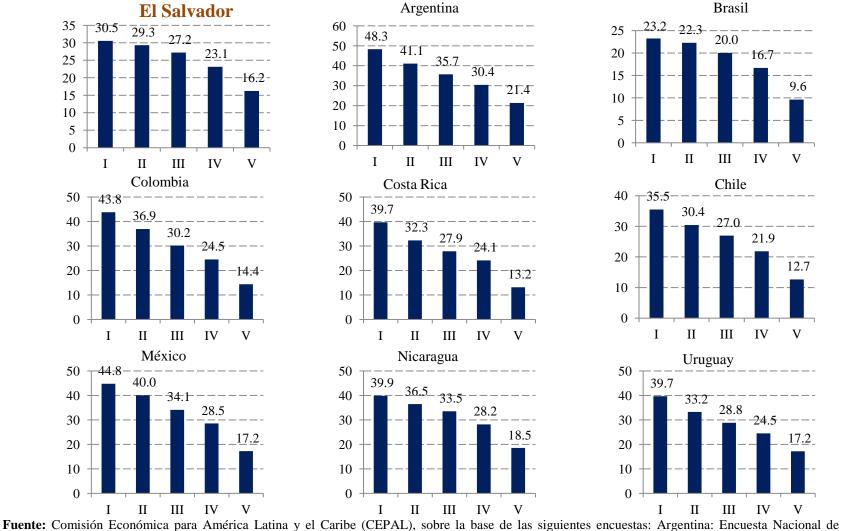
Notas: Periodos de estimación:


Largo plazo: Electricidad: 1972 – 2010 y Gasolinas: 1975 – 2010; Corto plazo: Electricidad: 1971 – 2010 y Gasolinas: 1975 – 2010 Fuente: Elaboración propia con información de OLADE y CEPAL.

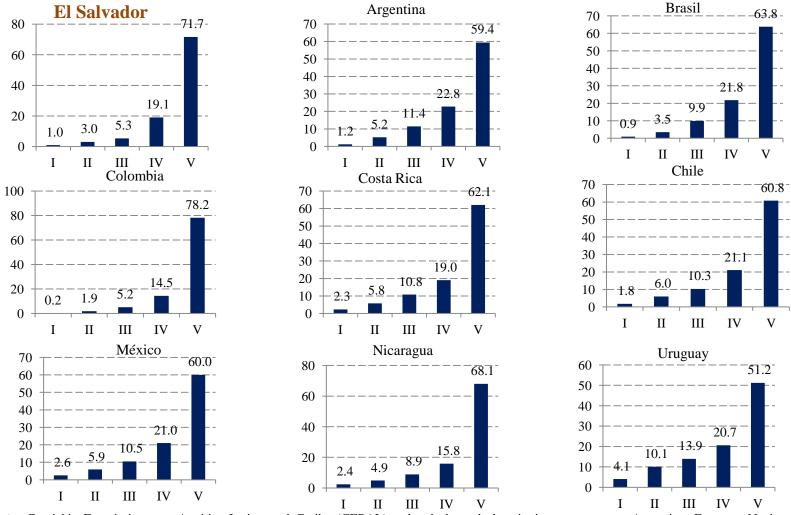
5.1 Demanda de electricidad y gasolinas: Series de tiempo


Modelo Gasolinas

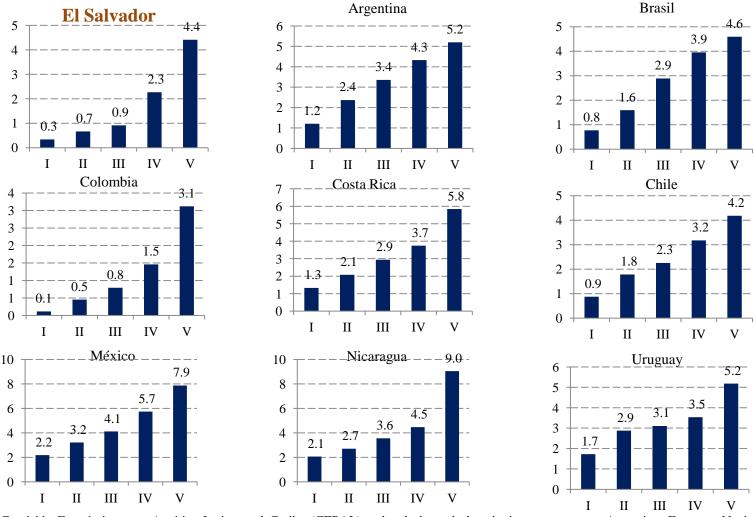
Modelo electricidad



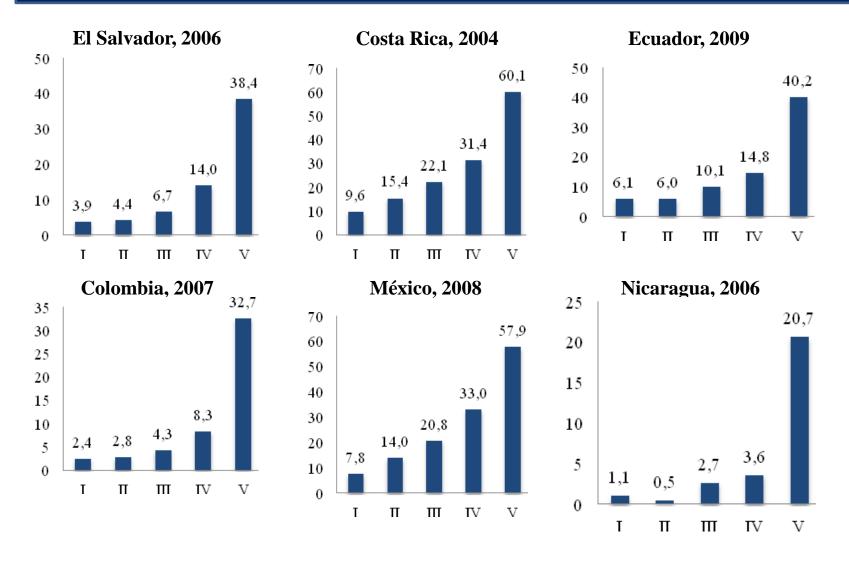
Proporción del gasto de los hogares en alimentos y bebidas con respecto al total del gasto en alimentos y bebidas por quintiles de ingreso, *porcentaje*


Fuente: Comisión Económica para América Latina y el Caribe (CEPAL), sobre la base de las siguientes encuestas: Argentina: Encuesta Nacional de Gastos de los Hogares 2004-2005; Brasil: Encuesta Nacional de Hogares - Gastos, ingresos y condiciones de vida: Brasil y Grandes Regiones 2008-2009; Chile: Encuesta de Presupuestos Familiares 2007; Colombia: Encuesta Nacional de Ingresos y Gastos 2006-2007; Costa Rica: Encuesta Nacional de Ingresos y Gastos de los Hogares, 2004; El Salvador: Encuesta de Ingresos y Gastos de los Hogares 2012; Nicaragua: Encuesta Nacional de Hogares para la Medición del Nivel de Vida 2009; Uruguay: Encuesta Nacional de Gastos e Ingresos de los Hogares, 2005-2006.

Proporción del gasto de los hogares en alimentos y bebidas con respecto al total de su gasto por quintiles de ingreso, *porcentaje*

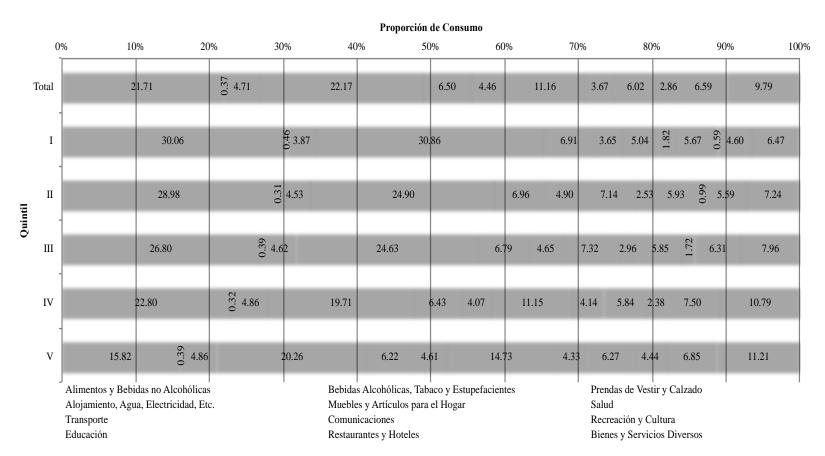

Fuente: Comisión Económica para América Latina y el Caribe (CEPAL), sobre la base de las siguientes encuestas: Argentina: Encuesta Nacional de Gastos de los Hogares 2004-2005; Brasil: Encuesta Nacional de Hogares - Gastos, ingresos y condiciones de vida: Brasil y Grandes Regiones 2008-2009, Chile: Encuesta de Presupuestos Familiares 2007; Colombia: Encuesta Nacional de Ingresos y Gastos 2006-2007; Costa Rica: Encuesta Nacional de Ingresos y Gastos de los Hogares; El Salvador: Encuesta de Ingresos y Gastos de los Hogares 2012; Nicaragua: Encuesta Nacional de Hogares para la Medición del Nivel de Vida 2009; Uruguay: Encuesta Nacional de Gastos e Ingresos de los Hogares, 2005-2006.

Proporción del gasto de los hogares en combustibles para transporte (gasolina, diesel, biodiesel) con respecto al total del gasto en combustibles para transporte por quintiles de ingreso, *porcentaje*


Fuente: Comisión Económica para América Latina y el Caribe (CEPAL), sobre la base de las siguientes encuestas: Argentina: Encuesta Nacional de Gastos de los Hogares 2004-2005; Brasil: Encuesta Nacional de Hogares - Gastos, ingresos y condiciones de vida: Brasil y Grandes Regiones 2008-2009; Chile: Encuesta de Presupuestos Familiares 2007; Colombia: Encuesta Nacional de Ingresos y Gastos 2006-2007; Costa Rica: Encuesta Nacional de Ingresos y Gastos de los Hogares; El Salvador: Encuesta de Ingresos y Gastos de los Hogares 2012; Nicaragua: Encuesta Nacional de Hogares para la Medición del Nivel de Vida 2009; Uruguay: Encuesta Nacional de Gastos e Ingresos de los Hogares, 2005-2006.

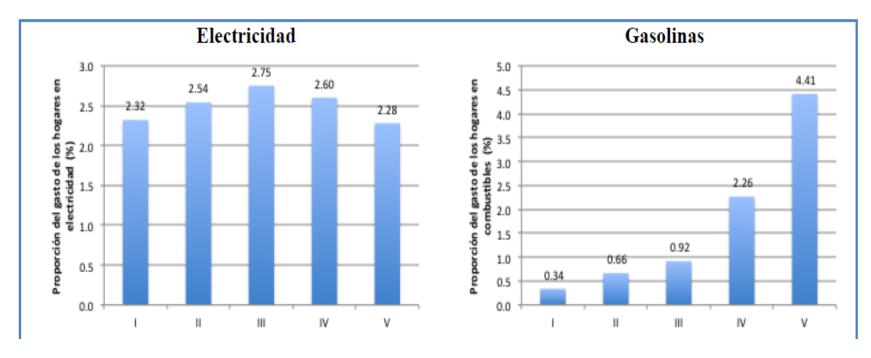
Proporción del gasto de los hogares en combustibles para transporte (gasolina, diesel, biodiesel) con respecto al total de su gasto por quintiles de ingreso, porcentaje

Fuente: Comisión Económica para América Latina y el Caribe (CEPAL), sobre la base de las siguientes encuestas: Argentina: Encuesta Nacional de Gastos de los Hogares 2004-2005; Brasil: Encuesta Nacional de Hogares - Gastos, ingresos y condiciones de vida: Brasil y Grandes Regiones 2008-2009 Chile: Encuesta de Presupuestos Familiares 2007; Colombia: Encuesta Nacional de Ingresos y Gastos 2006-2007; Costa Rica: Encuesta Nacional de Ingresos y Gastos de los Hogares; El Salvador: Encuesta de Ingresos y Gastos de los Hogares 2012; Nicaragua: Encuesta Nacional de Hogares para la Medición del Nivel de Vida 2009; Uruguay: Encuesta Nacional de Gastos e Ingresos de los Hogares, 2005-2006.

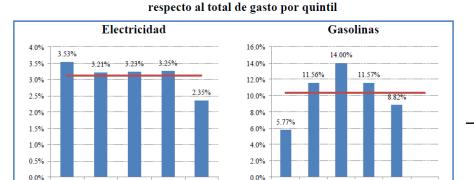

América Latina (6 países): tenencia de automóviles, por quintiles de ingreso, 2006-2009, porcentaje


Fuente: Comisión Económica para América Latina y el Caribe (CEPAL), sobre la base de Banco Mundial/Centro de Estudios Distributivos Laborales y Sociales (CEDLAS), Base de Datos Socioeconómicos para América Latina y el Caribe (SEDLAC).

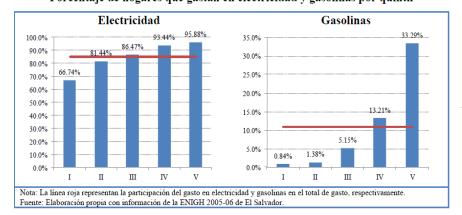
Los patrones regulares en la estructura del gasto en rubros de los hogares en El Salvador son:


Gráfica 1
Composición del gasto promedio de hogares en grandes rubros de consumo

Gráfica 2
Proporción del gasto de los hogares en electricidad y combustibles para transporte (gasolina, diesel, biodiesel) con respecto al total del gasto en electricidad y en combustibles para transporte por quintiles de ingreso



Gráfica 3
Proporción del gasto de los hogares en electricidad y combustibles para transporte (gasolina, diesel, biodiesel) con respecto al total del gasto por quintiles de ingreso


Gasto en electricidad y gasolinas excluyendo consumos cero y valores extremos:

Gráfica 5. Proporción del gasto promedio en electricidad y gasolinas

Nota: La línea roja representan la participación del gasto en electricidad y gasolinas en el total de gasto, respectivamente. Fuente: Elaboración propia con información de la ENIGH 2005-06 de El Salvador excluyendo valores extremos y consumos de ceros.

Gráfica 6. Porcentaje de hogares que gastan en electricidad y gasolinas por quintil

- ➤ La proporción del gasto en energía eléctrica es similar en los 4 primeros grupos de ingreso (3.2%) y disminuye en el quintil V (2.3%).
- ➤ La participación del gasto en gasolina en el total de gasto es de 10.3% para toda la muestra. A nivel de quintiles, los dos primeros gastan el 5.7% y 11.5% del total de su gasto y en los dos últimos quintiles las proporciones de gasto son 11.6% y 8.8% respectivamente
- ➤ La proporción de hogares en cada estrato de ingreso consumen energía eléctrica con un comportamiento heterogéneo pero bastante alto (Quintiles I y II: 66% y 81%, respectivamente. Quintil IV 93% y quintil V 95%).
- ➤ El porcentaje de hogares que gasta en gasolinas es diferenciado por estratos de ingreso (quintil I menos del 1% a 33% en quintil V).

5.2.2 El consumo de gasolinas

Modelos Curvas de Engel

Cuadro 7.

Estimaciones de las curvas de Engel para el gasto en

gasolinas total y por quintiles

$$w_i = \alpha + \beta_1 G_i + \beta_2 G_i^2 + \varepsilon_i$$

	Model	o lineal		Modelo cuadrático						
	α	β_1	α	β_1	β2					
Mínimos Cuadrados Ordinarios (OLS)										
	8.503	-0.001	9.413	-0.003	3.28e-07					
w_t	(20.83)*	(-5.06)*	(14.70)*	(-3.51)*	(1.84)**					
	9.134	-0.003	8.754	-0.002	-7.40e-07					
w_{qIII}	(4.01)*	(-0.87)	(1.73)**	(-0.14)	(-0.08)					
	12.22	-0.006	18.001	-0.021	8.55e-0.6					
WqIV	(7.91)*	(-2.81)*	(5.44)*	(-2.61)*	(1.97)					
	7.721	-0.0009	7.971	-0.0012	6.82e-08					
w_{qV}	(-3.45)*	(15.70)*	(9.44)*	(-1.46)	(0.36)					
Método General de Momentos (GMM) sin variables de control										
	5.482	0.0009	0.809	0.008	-1.81e-06					
w_l	(4.79)*	(1.06)	(0.25)	(1.95)*	(-2.01)*					
	10.891	-0.005	4.297	0.019	-0.00002					
w_{qIII}	(3.60)*	(-1.17)	(0.21)	(0.26)	(-0.34)					
	8.949	-0.002	5.269	0.0057	-3.74e-06					
w_{qIV}	(4.82)*	(-1.05)	(0.71)	(0.30)	(-0.35)					
	4.835	0.0008	5.043	0.0016	-4.88e-07					
w_{qV}	(4.00)*	(1.05)	(2.26)*	(0.71)	(-1.09)					
	Méto	do General de Mome	ntos (GMM) con vari	iables de control						
	6.202	-0.00006	4.191	0.002	-8.21e-07					
w _t	(6.73)*	(-0.06)	(2.16)*	(1.06)	(-1.44)*					
W	11.427	-0.0053	-2.680	0.046	-0.00004					
w_{qIII}	(3.59)*	(-1.19)	(-0.13)	(0.62)	(-0.71)					
· ·	7.321	-0.0001	5.516	0.00391	-2.11e-06					
w_{qIV}	(3.62)*	(-0.06)	(0.64)	(0.19)	(-0.18)					
	5.822	-0.0013	5.446	-0.0009	-7.72e-08					
w_{qV}	(5.51)*	(-1.46)	(2.76)*	(-0.41)	(-0.19)					
		Método de d	los etapas de Heckma	ın						
	9.099	-0.0012	9.824	-0.0022	2.22e-07					
w_i	(13.86)*	(3.95)*	(10.80)*	(-2.53)*	(1.15)					
W	11.209	-0.0059	-10.076	0.0073	-0.00006					
w_{qIII}	(2.84)*	(-0.98)	(-0.89)	(1.82)**	(-1.99)*					
W	9.217	-0.002	14.542	-0.017	8.83e-06					
W _{qIV}	(4.94)*	(-1.22)	(3.36)*	(-1.58)*	(1.36)					
	9.655	-0.0012	10.128	-0.0017	1.10e-07					
w_{qV}	(11.85)*	(-3.49)*	((8.45)*	(-1.71)*	(0.53)					

Notas: Los valores entre paréntesis representan el estadístico t para OLS y el estadístico z para GMM y el método de dos etapas de Heckman y donde (*) y (**) indica rechazo de la hipótesis nula a un nivel de significancia del 5 y 10 por ciento respectivamente. Fuente: Elaboración propia con información de la ENIGH 2005-06 de El Salvador.

Cuadro 8.

Variables de control de las estimaciones de curvas de Engel mediante GMM y dos etapas de Heckman para el gasto de gasolinas total y por quintiles

		Li	eal			Cuad	rático	
Variables de control	Total	Q _{III}	Q _{rv}	Qv	Total	Q _{III}	Q _{IV}	Qv
		Modelo	s GMM con vi	rriables de con	itrol			
Número de vehículos	0.394 (0.52)	-0.147 (-0.10)	-1.065 (-0.94)	2.107 (2.81)*	0.529 (0.85)	-0.3360 (-0.25)	-1.048 (-0.80)	2.0317 (3.39)*
Gasto en transporte público	0.005 (0.49)	-0.0219 (-0.49)	-0.052 (1.62)*	0.0056 (0.52)	0.007 (0.60)	-0.0183 (-0.37)	0.057 (1.76)*	0.0058 (0.53)
		Mod	ielos dos etaps	s de Heckman	i			
Número de vehículos	2.283 (30.67)*	2.6254 (9.25)*	2.384 (14.46)*	1.881 (19.74)*	2.283 (30.67)*	2.6254 (9.25)*	2.384 (14.46)*	1.881 (19.74)*
Gasto en transporte público	0.001 44 (0.87)	0.0024 (0.43)	0.0014 (0.36)	0.00061 (0.28)	0.001 44 (0.87)	0.0025 (0.43)	0.0013 (0.36)	0.0006 (0.28)
Notac: Loc valores entre par	intoric ronroc	ontan ol octad	ictico a nara	CMM walm	itada da daci	stanas da Uas	leman w dond	n /#\ v: /##\

Notas: Los valores entre parentesis representan el estadístico z para GMM y el método de dos etapas de Heckman y donde (*) y (**) indica rechazo de la hipótesis nula a un nivel de significancia del 5 y 10 por ciento respectivamente.

5.2.2 El consumo de gasolinas

Modelos tipo AIDS y QUAIDS

Cuadro 9.

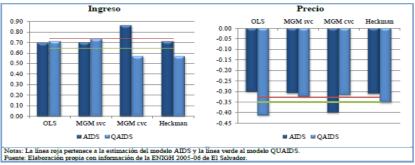
Elasticidades ingreso y precio del gasto en gasolina total y por quintiles

	A	AIDS	QU	AIDS					
	Elasticidad Ingreso	Elasticidad Precio	Elasticidad Ingreso	Elasticidad Precio					
	$\eta_{i,j}^{\chi} \equiv 1 + \frac{\beta_j}{w_{i,j}}$	$\eta_{ij}^{p} \equiv -1 + \frac{\gamma_{i}}{w_{ij}}$	$\eta_{ij}^x \equiv 1 + \frac{\beta_i}{w_{ij}} + 2 \frac{\lambda_i}{w_{ij}} + \ln \left[\frac{X_i}{P} \right]$	$\eta_{ij}^p \equiv -1 + \frac{\gamma_j}{w_{ij}}$					
	Mínimos Cuadrados Ordinarios (OLS)								
Total	0.691	-0.299	0.709	-0.412					
QIII	0.680	-0.328	0.593	0.766					
Q _{IV}	0.430	0.048	0.458	-0.456					
Qv	0.760	-0.393	0.847	-0.876					
	Método General de Momentos (GMM) sin variables de control								
Total	0.696	-0.306	0.731	-0.323					
Q _{III}	0.754	-0.433	0.721	-0.549					
Qıv	0.615	-0.236	0.719	-0.490					
Qv	0.540	-0.041	0.717	-0.039					
	Método General	l de Momentos (GMM	l) con variables de contr	ol					
Total	0.856	-0.398	0.569	-0.316					
Q _{III}	0.764	-0.416	0.511	-0.318					
Q _{IV}	0.663	-0.341	0.397	-0.306					
Qv	0.552	-0.198	0.347	-0.231					
	M	étodo de dos Etapas d							
Total	0.706	-0.309	0.736	-0.351					
Q _{III}	0.751	-0.438	0.678	-0.302					
Q _{IV}	0.656	-0.319	0.662	-0.209					
Qv	0.644	-0.158	0.662	-0.190					
Fuente: Elabora	Fuente: Elaboración propia con información de la ENIGH 2005-06 de El Salvador.								

Cuadro 10.

Variables de control de los modelos por los métodos GMM y

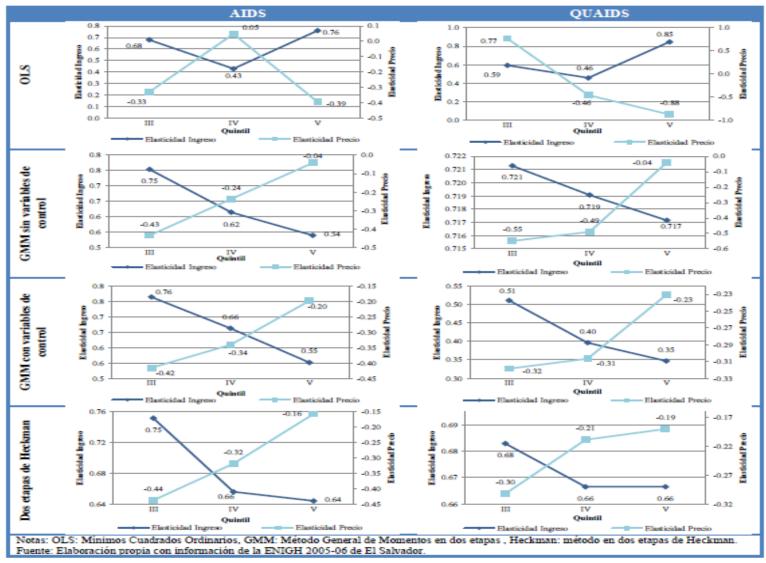
dos etapas de Heckman para el gasto en gasolinas total y por quintiles


						, r		
		AIDS	S			Q	UAIDS	
Variables de control	Total	Q _{III}	Orv	Ov	Total	Qm	Q _{IV}	O _v
			os GMM con v					
Manual Institution of	0.356		-0.636	1.284	0.762	2.144	-0.280	1.289
Número de vehículos y motos	(0.60)		(-0.51)	(2.11)*	(1.60)**	(1.21)*	(-0.03)	(2.53)*
Ama	1.037				2.000	-4.012	0.338	2.048
	(1.18)				(2.19)*	(-2.89)*	(0.21)	(2.65)*
Nivel de estudios del jefe de		1.856	-0.291	0.846				
familia		(2.11)*	(-0.50)	(2.59)*				
Escribe el jefe de familia		-4.949	2.971					
Zitine et jete de manur		(-1.94)**	(1.55)					
Sexo del jefe de familia	1.402				1.185			
Sens del jete de manus	(2.59)*				(2.16)*			
Trabaja el jefe de familia					1.698			
					(2.84)*			
Edad del jefe de familia	-0.023							
	(1.25)							
			delos dos etapa					
Número de vehículos y motos	2.094	3.344	2.548	1.526	0.533	3.310		0.660
	(13.2)*	(9.46)*	(7.19)*	(8.29)*	(2.06)*	(7.23)*		(1.57)
Area	0.399				0.481	0.373		0.681
	(3.20)*				(2.59)*	(2.24)*		(2.07)*
Tipo de vivienda	0.080	0.613			0.047			
	(1.90)**	(2.38)*	-0.735	0.304	(1.66)**			
Sexo del jefe de familia		0.713 (1.81)*	-0.735 (-4.33)*	(2.22)*				
-		(1.81)*	-0.008	(2.22)*		-0.043		-0.004
Gasto en transporte publico			(-1.17)			(-1.29)		(-1.19)
Numero de habitantes en el	0.107		(-1.17)	0.096	-	-0.044		(-1.19)
hogar	(2.91)*			(0.64)		(-0.78)		
	(2.71)		-0.027	(0.04)		-0.032		
Edad del jefe de familia			(-6.92)*			(-3.78)*		
Nivel de estudios del jefe de			(0.52)	0.203		(3.70)		0.392
familia				(2.99)*				(2.92)*
				-0.005				,2,
Zona geografica				(-2.33)*				
						-0.897		
Escribe el jefe de familia						(-3.82)*		
Total district to the Ti							-0.378	
Trabaja el jefe de familia							(-6.73)*	

Notas: Los valores entre paréntesis representan el estadístico z para GMM y el método de dos etapas de Heckman y donde (*) y (**) indica rechazo de la hipotesis mula a un nivel de significancia del 5 y 10 por ciento respectivamente. Fuente: Elaboración propia con información de la ENIGH 2005-06 de El Salvador.

Gráfica 11.

Elasticidades ingreso y precio del gasto en gasolina


considerando el total de hogares

5.2.2 El consumo de gasolinas

Modelos tipo AIDS y QUAIDS

Gráfica 12. Elasticidades ingreso y precio del gasto en gasolinas por quintiles de ingreso

5.2.3 El consumo de ElectricidadModelos Curvas de Engel

Cuadro 3. Estimaciones de las curvas de Engel para el gasto en

electricidad total y por quintiles

Cuadro 4.

Variables de control de las estimaciones de curvas de Engel mediante GMM y dos etapas de Heckman para el gasto de electricidad total y por quintiles

			Li	eal					Cuad	rático		
Variables de control	Total	Qı	Qu	Q _{III}	Qıv	Qv	Total	Qı	Qıı	Qπ	Q_{rv}	Qv
				Modelos	GMM con v	ariables de c	ontrol					
Número de habitaciones	0.1903	-0.253	0.261	-0.236	0.261	0.179	0.2084	0.531	0.518	0.094	0.433	0.252
Numero de naonaciones	(4.83)*	(-0.83)	(1.58)	(-1.49)	(2.90)*	(2.97)*	(5.30)*	(1.88)**	(3.61)*	(1.10)	(5.97)*	(4.49)*
				Mode	los dos etap	as de Heckun	140					
Area	0.382	0.584	0.295	0.276	0.379	0.312	0.3821	0.584	0.295	0.274	0.376	0.312
Alva	(5.90)*	(3.94)*	(2.15)*	(1.93)*	(2.46)*	(1.65)**	(5.90)*	(3.94)*	(2.15)*	(1.93)*	(2.46)*	(1.65)**
Tipo de vivienda	0.127	0.114	0.108	0.116	0.116	0.259	0.1270	0.114	0.108	0.116	0.116	0.260
Tipo de Vivienza	(6.60)*	(2.64)*	(2.67)*	(2.90)*	(2.40)*	(4.90)*	(6.60)*	(2.64)*	(2.67)*	(2.90)*	(2.40)*	(4.90)*
Número de habitaciones	0.142	0.129	0.176	0.074	0.119	0.218	0.1421	0.129	0.176	0.0743	0.120	0.218
Numero de monaciones	(4.06)*	(1.49)	(2.08)*	(0.99)	(1.58)**	(2.66)*	(4.06)*	(1.49)	(2.08)*	(0.99)	(1.58)**	(2.66)*
Edad del jefe de familia	0.0018	0.007	-0.004	0.0013	-0.002	0.0026	0.0018	0.007	-0.003	0.0013	-0.0020	0.0026
Edad del jete de tamina	(0.62)	(1.45)	(-0.89)*	(0.33)	(-0.47)	(0.56)	(0.62)	(1.45)	(-0.89)	(0.33)	(-0. 4 7)	(0.56)
Número de	0.3151	0.462	0.383	0.404	0.227	0.191	0.3151	0.462	0.383	0.4044	0.227	0.1910
electrodomésticos	(18.00)*	(8.99)*	(8.66)*	(9.58)*	(6.42)*	(5.53)*	(18.00)*	(8.99)*	(8.66)*	(9.58)*	(6.42)*	(5.53)*
Nivel de estudios del	-0.0525	0.150	0.116	0.104	-0.076	-0.078	-0.0525	0.150	0.116	0.1045	-0.076	-0.0785
jefe de familia	(-0.11)	(1.30)	(-2.90)*	(0.82)	(-0.77)	(0.354)	(-0.11)	(1.30)	(0.89)	(0.82)	(-0.77)	(-0.93)

Notas: Los valores entre paréntesis representan el estadístico z para GMM y el método de dos etapas de Heckman y donde (*) y (**) indica rechazo de la hipótesis mila a un nivel de significancia del 5 y 10 por ciento respectivamente.

Fuente: Elaboración propia con información de la ENIGH 2005-06 de El Salvador.

Bien de lujo con:

 $\beta_i > 0$

Bien necesario con $\beta_i < 0$

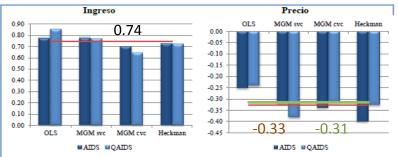
		-	$\beta_1 G_l + \beta_2 G_l^2 + \varepsilon_l$		
	Model	o lineal		Modelo cuadrático	
	α	β_1	α	β_1	β2
			drados Ordinarios (O		
w _i	3.522	-0.0007	3.716	-0.0012	1.50e-07
•	(59.45)*	(-11.18)*	(47.49)*	(-8.70)*	(3.78)*
w_{ql}	4.080	-0.0031	5.634	-0.0169	0.00003
4.	(9.22)*	(-1.74)**	(5.49)*	(-2.02)*	(1.68)**
Wall	3.614	-0.0015	3.881	-0.0032	2.21e-06
4	(11.54)*	(-1.65)**	(5.83)*	(-0.84)	(0.45)
w_{qIII}	3.317	-0.0005	3.120	0.0003	-8.85e-07
4	(13.83)*	(-0.95)	(7.52)*	(0.23)	(-0.58)
w_{qlV}	3.875	-0.0011	4.470	-0.0032	1.60e-06
4	(19.62)*	(-3.36)*	(13.17)*	(-3.12)*	(2.16)*
w_{qV}	3.502	-0.0008	3.984	-0.0015	2.02e-07
4.	(34.45)*	(-9.84)*	(28.03)*	(-8.59)*	(4.82)*
			entos (GMM) sin vari		4.0002
w _t	3.058	-0.0001	2.388	0.0014	-4.92e-07
•	(28.83)*	(-1.20)	(17.37)*	(4.15)*	(-3.71)*
w_{ql}	-2.909	0.027	-28.061	0.2644	-0.0005
4.	(-0.92)	(1.93)**	(-1.51)	(1.70)**	(-1.71)**
w_{qll}	-2.087	0.016	-13.612	0.0956	-0.0001
4	(-0.93)	(2.28)*	(-3.17)*	(3.80)*	(-3.65)*
w_{qIII}	0.818	0.006	-1.200	0.0167	-0.00001
	(0.56)	(1.52)	(-0.92)	(2.96)*	(-2.50)*
w_{qIV}	0.914	0.004	0.638	0.0086	-6.27e-06
4	(1.03)	(2.51)*	(0.76)	(3.12)*	(-3.22)*
w_{aV}	3.921	-0.001	2.988	-0.0003	-3.54e-08
1.	(13.12)*	(-4.80)*	(11.75)*	(-1.05)	(-0.54)
	2.523	-0.0002	ntos (GMM) con vari		-3.09e-07
w_l	(30.02)*	(-1.28)	2.284 (18.59)*	0.0005 (1.37)*	-3.09e-07 (-2.78)*
	-3.103	0.0307	-24.987	0.233	-0.00043
w_{ql}	(-1.67)**	(2.97)*	(-1.58)	(1.76)**	(-1.81)**
-	-1.0005	0.0108	-6.369	0.0491	-0.00006
w_{qll}	(-1.17)	(3.06)*	(-1.65)**	(2.10)*	(-2.18)*
	-0.306	0.0098	-1.418	0.0167	-0.00001
w_{qIII}	(-0.38)	(3.62)*	(-1.08)	(2.87)*	(-2.47)*
	1.670	0.0014	1.770	0.0016	-1.94e-06
w_{qIV}	(4.78)*	(1.62)**	(2.17)*	(0.58)	(-1.04)
	2.665	-0.0006	3.088	-0.0016	1.84e-07
w_{qV}	(15.22)*	(-3.59)*	(12.57)*	(-3.95)*	(2.36)*
	(13.22)	(/	los etapas de Heckma		(2.20)
	4.104	-0.001	4.634	-0.002	3.21e-07
w_i	(52.08)*	(-14.21)*	(39.85)*	(-12.02)	(6.63)*
_	5.770	-0.006	7.429	-0.0209	0.00003
w_{ql}	(10.53)*	(-3.35)*	(7.35)*	(-2.63)*	(7.35)**
	5.084	-0.003	6.233	-0.010	8.87e-06
w_{qII}	(12.26)*	(-3.55)*	(7.77)*	(-2.46)*	(1.59)**
	4.067	-0.002	4.354	-0.003	1.16e-06
w_{qIII}	(14.41)*	(-2.62)*	(9.26)*	(-1.61)	(0.75)
$\overline{}$	4.945	-0.002	6.419	-0.007	3.39e-06
w_{qIV}	(11.25)*	(-3.38)*	(7.50)*	(-2.93)*	(2.07)*
$\overline{}$	3.654	-0.001	4.299	-0.002	2.40e-07
w_{qV}	(31.31)*	(-10.13)*	(26.26)*	(-9.32)*	(5.48)*

Notas: Los valores entre parentesis representan el estadístico t para OLS y el estadístico z para GMM y el método de dos etapas de Heckman y donde (*) y (**) indica rechazo de la hipótesis nula a un nivel de significancia del 5 y 10 por ciento respectivamente. Fuente: Elaboración propia con información de la ENIGH 2005-06 de El Salvador.

5.2.3 El consumo de Electricidad

Modelos tipo AIDS y QUAIDS

Cuadro 5. Elasticidades ingreso y precio del gasto en electricidad total y por quintiles

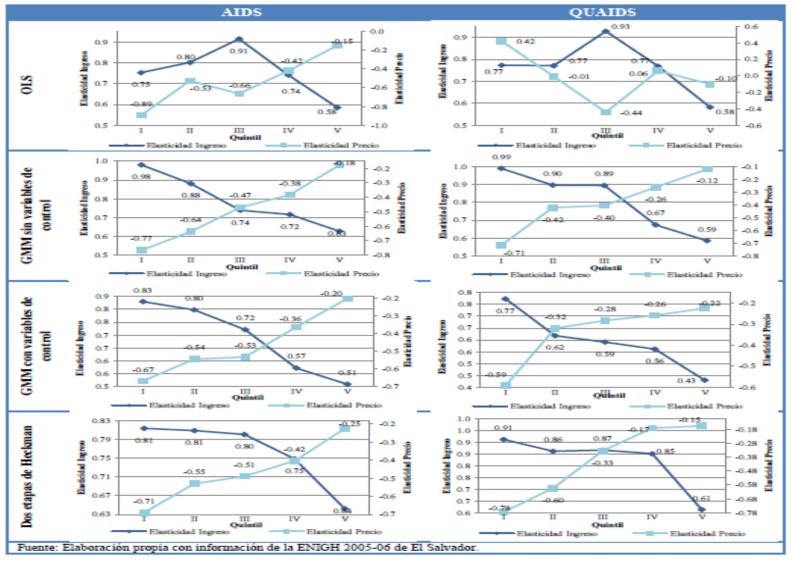

	AIDS QUAIDS							
	Elasticidad Ingreso	Elasticidad Precio	Elasticidad Ingreso	Elasticidad Precio				
	$\eta_{ij}^{z} \equiv 1 + \frac{\beta_{j}}{w_{ij}}$	$\eta_{ij}^p \equiv -1 + \frac{\gamma_j}{w_{ij}}$	$\eta_{ij}^{x} \equiv 1 + \frac{\beta_{i}}{w_{ij}} + 2 \frac{\lambda_{i}}{w_{ij}} + \ln \left[\frac{X_{i}}{P} \right]$	$\eta_{ij}^p \equiv -1 + \frac{\gamma_j}{w_{ij}}$				
Mínimos Cuadrados Ordinarios (OLS)								
Total	0.776	-0.251	0.851	-0.240				
Qı	0.752	-0.892	0.773	0.421				
Q _{II}	0.801	-0.526	0.771	-0.007				
Q _{III}	0.914	-0.663	0.928	-0.440				
Qıv	0.741	-0.419	0.769	0.062				
Q_V	0.585	-0.152	0.583	-0.100				
Método General de Momentos (GMM) sin variables de control								
Total	0.777	-0.320	0.768	-0.379				
Qı	0.980	-0.767	0.989	-0.714				
Qπ	0.880	-0.637	0.896	-0.421				
QIII	0.738	-0.469	0.894	-0.404				
Q _{IV}	0.716	-0.383	0.675	-0.262				
Q_V	0.627	-0.177	0.586	-0.121				
	Método General	l de Momentos (GMM	l) con variables de contr	ol				
Total	0.702	-0.338	0.642	-0.312				
Qı	0.830	-0.667	0.773	-0.592				
Qп	0.798	-0.544	0.618	-0.319				
Q _{III}	0.721	-0.532	0.591	-0.283				
Q _{IV}	0.573	-0.362	0.561	-0.258				
Qv	0.510	-0.202	0.430	-0.225				
	M	létodo de dos Etapas d	le Heckman					
Total	0.728	-0.398	0.720	-0.325				
Qı	0.813	-0.710	0.911	-0.776				
Q _{II}	0.808	-0.550	0.861	-0.603				
Q _{III}	0.800	-0.509	0.866	-0.333				
Q_{IV}	0.748	-0.424	0.851	-0.169				
Q_{V}	0.642	-0.246	0.613	-0.153				
Fuente: Elabora	ación propia con información o	de la ENIGH 2005-06 de El S	Salvador.					

Cuadro 6. Variables de control de los modelos por los métodos GMM y dos etapas de Heckman para el gasto de electricidad total y por quintiles

	AIDS							QUAIDS					
Variables de control	Total	Qı	Qu	Qm	Q _{IV}	Qv	Total	Qı	Qu	Q _{III}	Q _{IV}	(
				Modelos G	MM con va	riables de	control						
Edad del jefe de familia	0.015	0.029	0.013	0.010	0.016	0.017	0.013	0.031	0.009		0.023	0.0	
Edad del Jese de samilia	(5.24)*	(2.70)*	(1.49)	(1.50)*	(3.06)*	(4.59)*	(4.80)*	(2.66)*	(1.19)		(3.72)*	(1.7	
Zona geográfica	-0.006	-0.005	-0.009	-0.005	-0.007	-0.004	-0.007	-0.004			-0.006		
	(-6.43)* 0.252	(-1.49)	(-4.15)*	(-2.56)* 0.171	(-3.91)* 0.289	(-2.00)* 0.147	(-7.55)* 0.324	(-1.27)	0.608		(-3.5)* 0.260		
Habitaciones en el hogar	(4.84)*			(2.22)*	(4.17)*	(2.74)*	(10.06)*		(5.94)*		(3.64)*		
Número de	(1.01)			0.290	0.174	0.081	(20.00)		(221)	0.399	0.164	0.	
electrodomésticos				(5.87)*	(4.60)*	(3.58)*				(1.85)*	(4.31)*	(5.	
Trabaja el jefe de familia			0.002							0.300	0.344		
Tracaja et jete de familia			(0.01)							(0.25)	(1.52)		
Alumbrado público	-1.023						-1.041				-0.948		
	(-8.27)*						(-7.18)*				(-2.83*		
Nivel educativo del jefe de familia										0.490 (0.40)	0.192		
										(0.40)	-0.171	-0	
Sexo del jefe de familia											(-0.97)	(-1	
				-0.083							(4.27)		
Tipo de vivienda				(-2.56)+									
Area									0.608				
Aues									(5.94)*				
				Modelo	os dos etapa	s de heckm	ian						
Trabaja el jefe de familia	0.027	0.097						0.007	-0.198	0.281	0.183		
Numero de	(2.45)*	(2.52)*		0.390	0.219	0.238	0.337	(0.10)	(-0.71)	(3.99)*	(2.42)*		
electrodomésticos	(11.4)*			(6.46)*	(3.03)*	(3.95)*	(24.6)*						
	(22.1)		0.180	0.094	0.132	0.241	(21.0)					0	
Tipo de vivienda			(2.89)*	(1.71)**	(2.22)*	(3.06)*						(4.	
Numero de habitantes			0.076	0.037	0.126	(5.55)		0.031					
Numero de montantes			(1.62)**	(0.77)	(2.49)*			(2.19)*					
Habitaciones en el hogar	0.234			0.155		0.346							
	(3.54)*			(1.25)		(3.41)*							
Sexo del jefe de familia	-0.182 (-1.79)**			0.126									
	0.006			(-0.6) 0.010									
Edad del jefe de familia	(1.89)**			(1.94)**									
Area	0.145			(2.51)									
	(1.34)*												
7				-0.002									
Zona geográfica				(-0.82)									
Nivel educativo del jefe de				0.262									
familia			stadistico z	(1.65)**									

un nivel de significancia del 5 y 10 por ciento respectivamente. Fuente: Elaboración propia con información de la ENIGH 2005-06 de El Salvador.

Gráfica 8. Elasticidades ingreso y precio del gasto en electricidad considerando el total de hogares



Notas: La linea roja pertenece a la estimación del modelo AIDS y la línea verde al modelo QUAIDS. Fuente: Elaboración propia con información de la ENIGH 2005-06 de El Salvador.

5.2.3 El consumo de Electricidad

Modelos tipo AIDS y QUAIDS

Gráfica 9. Elasticidades ingreso y precio del gasto en electricidad por quintiles de ingreso

6. Consideraciones finales y recomendaciones

- ✓ Existen patrones de consumo sistemáticos diferenciados por quintiles de ingreso.
- ✓ Ley de Engel.
- ✓ Nuevos espacios de consumo.

Series de tiempo:

Gasolina:

- Elasticidad ingreso: 1.010
- Elasticidad precio: -0.341

Electricidad:

- Elasticidad ingreso: 0.879
- Elasticidad precio: -0.298

6. Consideraciones finales y recomendaciones

Sección cruzada:

Gasolina (AIDS y QUAIDS):

- Elasticidad ingreso: 0.56 y 0.85 (rango)
- Elasticidad precio: -0.29 y -0.41 (rango) incluso coeficientes cercanos a cero en los quintiles de ingreso más altos.
- Variables de control: Número de automóviles, el gasto en transporte público y el área geográfica donde se ubica el hogar

Electricidad (AIDS y QUAIDS):

- Elasticidad ingreso: 0.64 y 0.85 (rango)
- Elasticidad precio: -0.24 y -0.39 (rango)
- Variables de control: Número de habitaciones, electrodomésticos, número de habitaciones con que cuenta el hogar y escolaridad del jefe de familia tienen efectos positivos en el consumo de electricidad.

6. Consideraciones finales y recomendaciones

Las elasticidades ingreso y precio en el consumo de electricidad son diferentes por estratos de ingreso
Existe una intensa dependencia del automóvil privado en los grupos de ingresos más elevados.
Los hogares con menores ingresos tienen una mayor elasticidad ingreso de la demanda de gasolina, que disminuye con el incremento del ingreso.
Las elasticidades precio son generalmente mayores para los hogares con menores ingresos, probablemente debido a las restricciones presupuestarias más estrictas.
Los resultados muestran la relevancia de identificar las consecuencias, por niveles de ingreso, de distintas estrategias y la alta dependencia de estas elasticidades a un estilo de desarrollo.