## LÍNEAS BASES Y EVALUACIÓN DE LOS IMPACTOS SOCIOECONÓMICOS DEL CAMBIO CLIMÁTICO EN AMÉRICA LATINA DDSAH-CEPAL

COMPONENTE SOCIOECONÓMICO PROGRAMA EUROCLIMA





# Análisis econométrico con datos de sección cruzada

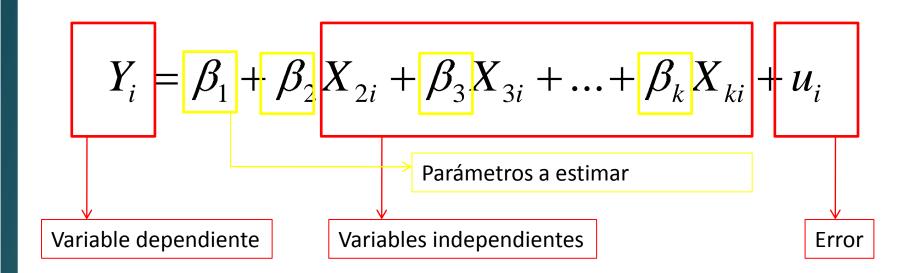


## TABLA DE CONTENIDO

- Introducción: el modelo de regresión y supuestos
- 2. Modelo de regresión lineal simple (ejemplo)
- 3. Modelo de regresión lineal múltiple (ejemplo)
- 4. Estimación
- 5. Inferencia
- 6. Formas funcionales de los modelos econométricos
- 7. Regresión con Variable Independiente Dicotómica
- 8. Violación de los supuestos del modelo de regresión
- 9. Ejemplo de aplicación





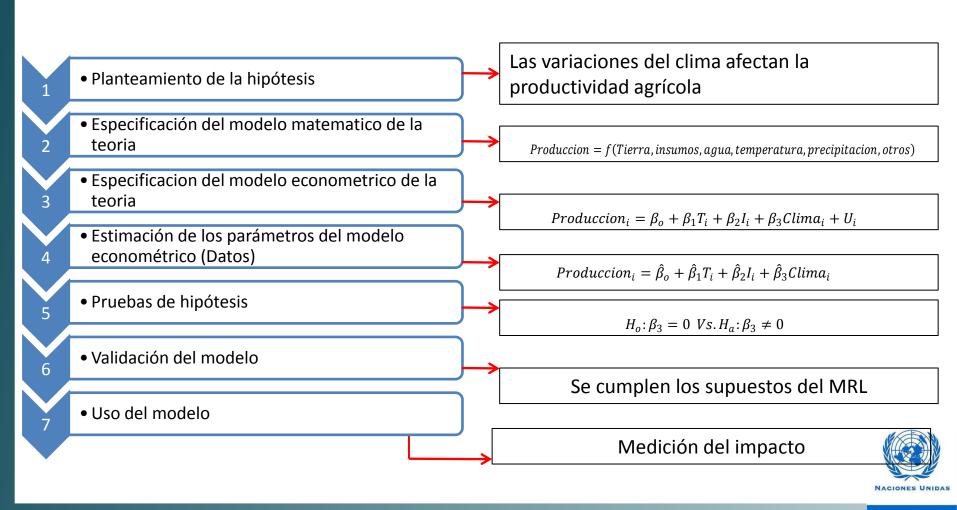


#### Dirección del análisis

- 1. Estimar el impacto ("+" o "-") de cada VI sobre la VD
- 2. Cuantificar cada impacto



Econometría: "parte de los métodos cuantitativos que emplea el economista". Es la unión de la teoría económica, la estadística y la matemática que busca establecer relaciones entre variables económicas para predecir el impacto de una o mas variables sobre la variable denominada "respuesta". (Gujarati, Wooldridge, Judge)



 $Y_i = \beta_o + \beta_1 X_i + u_i \ con \ i = 1,2, \dots, n \ individuos$ 

| Y <sub>1</sub> | $X_1$          |
|----------------|----------------|
| Y <sub>2</sub> | $X_2$          |
| •              |                |
| Y <sub>i</sub> | X <sub>i</sub> |
|                |                |
| Yn             | Xn             |

$$Y_t = \beta_o + \beta_1 X_t + u_t \ con \ t = 1, 2, ..., t$$

| Y <sub>1980</sub> | X <sub>1980</sub> |
|-------------------|-------------------|
| Y <sub>1981</sub> | X <sub>1981</sub> |
| •                 | •                 |
| Y <sub>t</sub>    | X <sub>t</sub>    |
| :                 | •                 |
| Y <sub>2009</sub> | X <sub>2009</sub> |
| Y <sub>2010</sub> | X <sub>2010</sub> |

 $Y_{it} = \beta_o + \beta_1 X_{it} + u_{it} \ con \ i = 1,2,...,n \ individuos; t = 1,2,...t$ 

| Individuo | Tiempo | Υ               | Х               |
|-----------|--------|-----------------|-----------------|
|           | t=1    | Y <sub>11</sub> | X <sub>11</sub> |
|           | T=2    | Y <sub>12</sub> | X <sub>12</sub> |
| i=1       | •      |                 | •               |
|           | •      |                 |                 |
|           | •      |                 |                 |
|           | T=t    | Y <sub>1t</sub> | Y <sub>1t</sub> |
|           | t=1    | Y <sub>21</sub> | X <sub>21</sub> |
|           | T=2    | Y <sub>22</sub> | X <sub>22</sub> |
| i=2       | •      |                 | •               |
| ' -       | •      |                 | •               |
|           | •      |                 | •               |
|           | T=t    | Y <sub>2t</sub> | Y <sub>2t</sub> |
|           | t=1    | Y <sub>i1</sub> | X <sub>i1</sub> |
|           | T=2    | Y <sub>i2</sub> | X <sub>i2</sub> |
| i=i       |        |                 | •               |
|           | •      |                 |                 |
|           | •      |                 | -               |
|           | T=t    | Y <sub>it</sub> | Y <sub>it</sub> |
|           | t=1    | Y <sub>n1</sub> | X <sub>n1</sub> |
| i=n       | T=2    | Y <sub>n2</sub> | X <sub>n2</sub> |
|           | •      |                 |                 |
|           | •      | •               | •               |
|           | •      | •               |                 |
|           | T=t    | Y <sub>nt</sub> | Y <sub>nt</sub> |



#### Supuesto 1: Modelo de Regresión Lineal

El modelo de regresión es lineal en los parámetros,

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

ó

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

Para el modelo de regresión lineal múltiple.

#### **Supuesto 2**: Los valores de X son fijos en muestreo repetido.

Los valores que toma el regresor  $X_j$  ( $\forall j=1,2,3,...,k$ ) son considerados fijos en muestreo repetido. Más técnicamente, se supone no estocástica.

#### Supuesto 3: El valor medio de la perturbación $u_i$ es igual a cero.

Dado el valor de X , la media, o el valor esperado del término aleatorio de perturbación  $u_i$  es cero. Técnicamente, el valor de la media condicional de  $u_i$  es cero. Simbólicamente, se tiene

$$E[u_i/X_i] = 0$$

ó

$$E[u_i / X_{2i}, X_{3i}, ..., X_{ki}] = 0$$



#### Supuesto 4: Homoscedasticidad o igual varianza de $U_i$

Dado el valor de X , la varianza de  $u_i$  es la misma para todas las observaciones.

Esto es, las varianzas condicionales de  $\,u_i\,$  son idénticas. Simbólicamente, se tiene que

$$var[u_i / X_i] = E[u_i - E[u_i] / X_i]^2$$

$$var[u_i / X_i] = E[u_i^2 / X_i]$$

$$var[u_i / X_i] = \sigma^2$$

#### Supuesto 5: No auto correlación entre las perturbaciones.

Dados dos valores cualquiera de  $\,X\,$  ,  $\,X_{i}\,$  y  $\,X_{j}\,$  (i 
eq j) , la correlación entre dos

 $u_i$  y  $u_j$  cualquiera  $(i \neq j)$  es cero. Simbólicamente,

$$cov(u_{i}, u_{j} / X_{i}, X_{j}) = E[u_{i} - E[u_{i}] / X_{i}][u_{j} - E[u_{j}] / X_{j}]$$

$$cov(u_{i}, u_{j} / X_{i}, X_{j}) = E[u_{i} / X_{i}][u_{j} / X_{j}]$$

$$cov(u_{i}, u_{j} / X_{i}, X_{j}) = 0$$

Supuesto 6: La covarianza entre  $u_i$  y  $X_i$  es cero, o  $E[u_i, X_i] = 0$  . Formalmente,

$$\begin{aligned} & \text{cov}[u_{i}, X_{i}] = E[u_{i} - E[u_{i}]][X_{i} - E[X_{i}]] \\ & \text{cov}[u_{i}, X_{i}] = E[u_{i}(X_{i} - E[X_{i}])] \\ & \text{cov}[u_{i}, X_{i}] = E[u_{i}X_{i}] - E[X_{i}]E[u_{i}] \\ & \text{cov}[u_{i}, X_{i}] = E[u_{i}X_{i}], \\ & E[u_{i}] = 0 \\ & \text{cov}[u_{i}, X_{i}] = 0 \end{aligned}$$



<u>Supuesto7</u>: **El número de observaciones n debe ser mayor que el número de parámetros por estimar.** 

#### Supuesto 8: Variabilidad en los valores de X .

No todos los valores de X en una muestra dada deben ser iguales. Técnicamente, Var[X] debe ser un número positivo finito.

#### **Supuesto 9: El modelo de regresión esta correctamente especificado.**

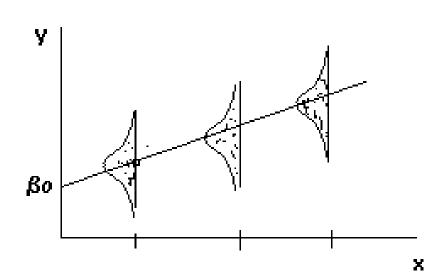
Alternativamente, no hay un sesgo de especificación o error en el modelo utilizado en el análisis empírico.

La omisión de variables importantes del modelo, o la escogencia de una forma funcional equivocada, o la consideración de supuestos estocásticos equivocados sobre las variables del modelo, harán muy cuestionable la validez de la interpretación de la regresión estimada.

#### **Supuesto 10: No hay multicolinealidad perfecta**



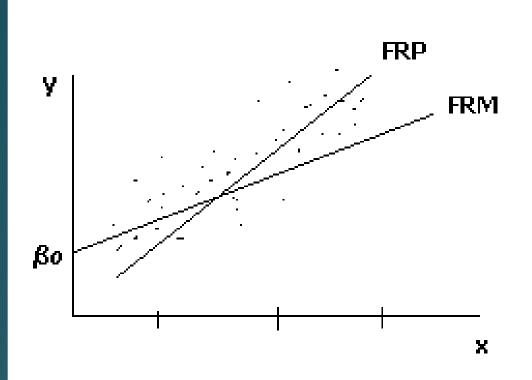
## 2. Modelo de regresión lineal simple



La función de regresión poblacional denota la media poblacional de la distribución de Y dado un Xi, que esta relacionado con una forma funcional f(xi)



## 2. Modelo de regresión lineal simple



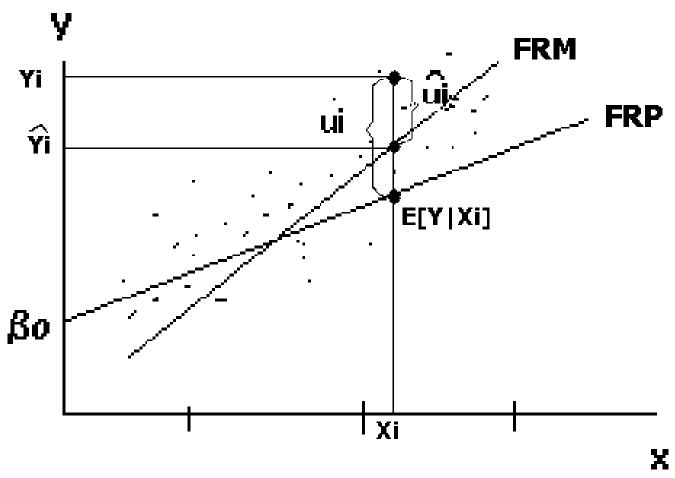
$$Y_i = \beta_o + \beta_1 X_i + U_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$



## 2. Modelo de regresión lineal simple



- Minimizar la suma de cuadrados de los errores estimados
- Son los estimadores que minimizan la SCE





## Estimadores de MCO

Min {SCE}

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$\hat{\beta}_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$$



3. Modelo de regresión lineal múltiple

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \ldots + \beta_k X_{ki} + u_i \qquad \text{\tiny i=1,2,\ldots,n}$$

Vector de Error
$$Y_{(nx\,1)} = X_{(nx\,(k+1))} B_{((k+1)x\,1)} + U_{(nx\,1)}$$

Vector de VD

Vector de Parámetros



4. Estimación: por Mínimos cuadrados ordinarios (MCO)

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

$$\vec{Y} = \vec{X}\vec{B} + \vec{U}$$

$$\hat{\mathbf{B}} = (X^t X)^{-1} X^t y$$

Estimador por MCO de B

$$Var[\hat{\mathbf{B}}] = (X^t X)^{-1} \sigma^2$$
 Estimador por de la VAR (B)

$$\begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} \rightarrow \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \vdots \\ \vdots \\ \hat{\beta}_k \end{bmatrix} \rightarrow \begin{bmatrix} \operatorname{var}(\hat{\beta}_1) \\ \operatorname{var}(\hat{\beta}_2) \\ \vdots \\ \vdots \\ \operatorname{var}(\hat{\beta}_k) \end{bmatrix}$$



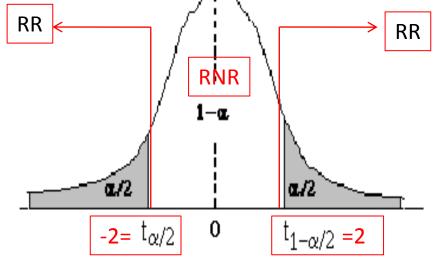
## Pruebas de inferencia individual

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \ldots + \beta_k X_{ki} + u_i$$

$$\hat{\beta}_2$$
Realmente la variable X2 afecta a la VD?  $H_0: \beta_2 = 0 \ Vs. H_a: \beta_2 \neq 0$ 

$$\text{RR}$$

$$t = \frac{\hat{\beta}_2}{\sqrt{var(\hat{\beta}_2)}} \sim t_{n-(k+1)}$$





## Pruebas de inferencia Global

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + u_i$$

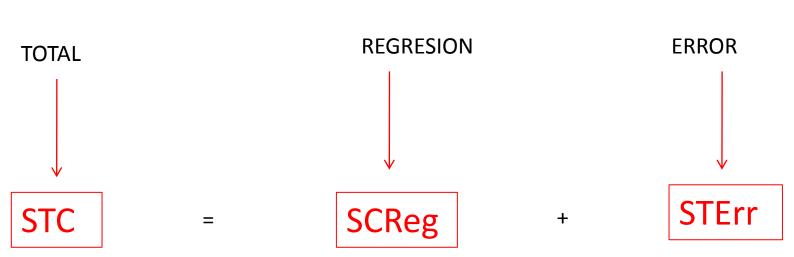
Al mismo tiempo, las variables X2, X3,..., Xk, explican a la VD ?

| Fuente de<br>Variación | Suma de<br>cuadrados | Grados de libertad | Medias cuadráticas                                                                                      | F                                              |
|------------------------|----------------------|--------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Regresión              | SCReg                | glReg=K+1          | $CMReg = rac{SCReg}{glReg}$                                                                            | $F = \frac{CMReg}{CMErr} \sim F_{glReg,glErr}$ |
| Error                  | SCErr                | glErr=N-(K+1)      | $CMErr = rac{SCErr}{glErr}$                                                                            | CMErr gineg ,gill i                            |
| Total                  | STC                  | N-1                | Ho: $\beta_1 = \beta_2 = \dots = \beta_k = 0$<br>Ho: $\beta_1 \neq \beta_2 \neq \dots \neq \beta_k = 0$ |                                                |



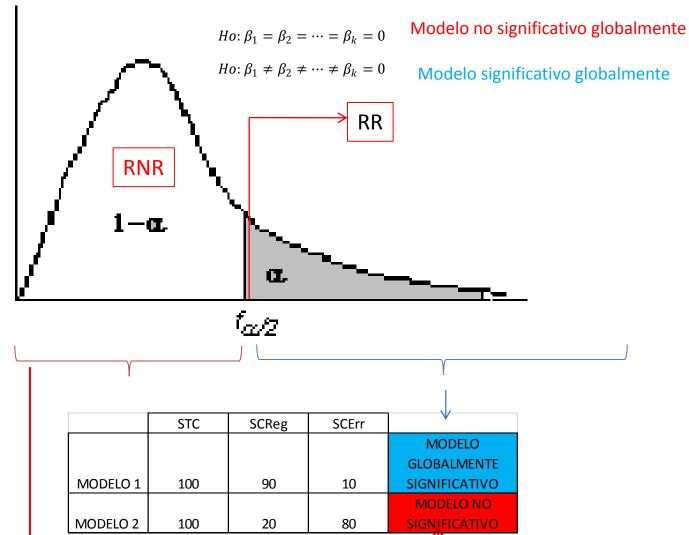
## Pruebas de inferencia Global

$$Y_{i} = \beta_{1} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \dots + \beta_{k}X_{ki} + u_{i}$$





## Pruebas de inferencia Global





#### 6. Formas funcionales de los modelos econométricos

Pueden ser consideradas distintas formas funcionales en que se relacionan la VD y las VI

$$Y_{i} = \beta_{1} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \dots + \beta_{k}X_{ki} + u_{i}$$

Lineal

Lineal

$$\frac{\partial Y}{\partial X_k} = \frac{\partial}{\partial X_k} (\beta_o + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + U_i) = \beta_k$$

Efecto marginal "ante un cambio absoluto de la VI "Xk", la VD responde en promedio en  $\beta_k$  manteniendo las demás variables constantes"

$$\eta = elasticidad = \frac{\%Y}{\%X_k} = \frac{\frac{\Delta Y}{Y}}{\frac{\Delta X_k}{X}} = \frac{\Delta Y}{\Delta X_k} * \frac{X_k}{Y} = \frac{\partial Y}{\partial X_k} * \frac{X_k}{Y} = \beta_k * \frac{X_k}{Y}$$

Elasticidad "ante un cambio porcentual de la VI "Xk", la VD responde en promedio en  $\beta_k * \frac{X_k}{V}$ 





#### 6. Formas funcionales de los modelos econométricos

| MODELO                       | ECUACION                                  | INTERPRETACION DE LOS COEFICIENTES (Bk) | ELASTICIDAD (η)           |
|------------------------------|-------------------------------------------|-----------------------------------------|---------------------------|
| Lineal -Lineal               | $Y_i = \beta_o + \beta_1 X_i + U_i$       | Efecto marginal                         | $\beta_k * \frac{X_k}{Y}$ |
| Logaritmico -<br>Lineal      | $LN Y_i = \beta_o + \beta_1 X_i + U_i$    | Semielasticidad                         | $\beta_k * X_k$           |
| Logaritmico -<br>Logaritmico | $LN Y_i = \beta_o + \beta_1 LN X_i + U_i$ | Elasticidad                             | $eta_k$                   |
| Lineal -<br>Logaritmico      | $Y_i = \beta_o + \beta_1 LN X_i + U_i$    | Semielasticidad                         | $\frac{\beta}{Y}$         |

$$Y = a_0 + a_1 * X_1 + a_2 * X_2 + a_3 * X_1^2 + a_4 * X_2^2 + a_5 * X_1 X_2 + \varepsilon$$

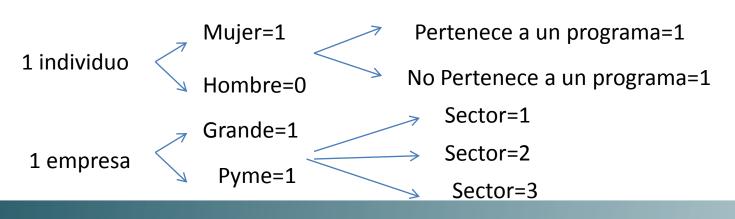
$$Y = a_0 + a_1 * \sqrt{X_1} + a_2 * \sqrt{X_2} + a_3 * X_1 + a_4 * X_2 + a_5 * \sqrt{X_1 X_2} + \varepsilon$$

Formas funcionales polinómicas

$$Y=A*X_1^{lpha}*X_2^{eta}e^u$$
 Modelo Coob



- ✓ Las variables explicadas no solo dependen de VI continuas.... También dependen de variables dicótomas, categóricas, de casilla, discretas, indicadoras, binarias...
- ✓ Cuatro formas de medir en estadísticas:
  - ✓ VARIABLES NOMINALES: Genero (dos categorías), Raza (mas de dos categorías)
  - ✓ VARIABLES ORDINALES: estrato (1, 2, 3, 4, 5, y 6), Tamaño del predio (Grande, Mediano, Pequeño), Tamaño de la industria, ....
  - ✓ VARIABLES CONTINUA
  - ✓ VARIABLE DE RAZON







El tratamiento de este tipo de variables será el siguiente:

- 1. Se define la variable dummy Di, como:
  - Di=1 si la unidad de análisis posee la característica
  - Di=0 si la unidad de análisis no posee la característica
- 2. Siempre se tomara el "1" como referencia:
- 3. Si la variable dummy presenta mas de dos categorías, se crearan (k-1) dummy, donde K es el numero de categorías.
  - 1. Tamaño de las empresas (grande (G), Mediana (M) y Pyme (P). Aquí K=3, entonces se crean 2 dummy
  - D1=1 si la empresa es grande
  - D1=0 de lo contrario

Se deja a la categoría (P) como referencia

- D2=1 si la empresa es Mediana
- D2=0 de lo contrario



## Se pueden presentar varios casos:

- Una variable dependiente continua y una variable independiente dicótoma de dos categorías
- Una variable dependiente continua y dos variables independientes: una continua y una dicótoma de dos categorías
- Una variable dependiente continua y dos variables independientes:
   una continua y una dicótoma de dos categorías
- Una variable dependiente continua y dos variables independientes: una continua y una dicótoma de dos categorías mas una interacción



| DESCRIPCION                                                                           | MODELO                                                                                                      |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Una variable dependiente continua y una                                               | $Y_i = \beta_o + \beta_1 D_i + U_i$                                                                         |
| variable independiente dicótoma de dos                                                | $D_i=1$ si posee la caracteristica                                                                          |
| categorías                                                                            | $D_i = 0$ si no posee la caracteristica                                                                     |
| Una variable dependiente continua y dos                                               | $Y_i = \beta_o + \beta_1 X_i + \beta_2 D_i + U_i$                                                           |
| variables independientes: una continua y una                                          | $D_i=1si\;posee\;la\;caracteristica$                                                                        |
| dicótoma de dos categorías                                                            | $D_i = 0$ si no posee la caracteristica                                                                     |
| Una variable dependiente continua y dos                                               | $Y_i = \beta_o + \beta_1 X_i + \beta_2 D_i + \beta_{3*} * X_i * D_i + U_i$                                  |
| variables independientes: una continua y una                                          | $D_i=1si$ posee la caracteristica                                                                           |
| dicótoma de dos categorías más la interacción                                         | $D_i = 0$ si no posee la caracteristica                                                                     |
| Una variable dependiente continua y tres                                              | $Y_i = \beta_o + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 X_i + U_i$                                       |
| variables independientes: una continua y dos                                          | $D_{1i} = 1$ si posee la caracteristica                                                                     |
| dicótomas de dos categorías                                                           | $D_{1i}=0$ si no posee la caracteristica                                                                    |
|                                                                                       | $D_{2i} = 1$ si posee la caracteristica                                                                     |
|                                                                                       | $D_{2i} = 0$ si no posee la caracteristica                                                                  |
| Una variable dependiente continua y tres variables independientes: una continua y dos | $Y_{i} = \beta_{o} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{1i} * D_{2i} + \beta_{4}X_{i} + U_{i}$ |
| dicótomas de dos categorías con interacción                                           | $D_{1i} = 1$ si posee la caracteristica                                                                     |
| entre las dummy                                                                       | $D_{1i}=0$ si no posee la caracteristica                                                                    |
| , and a district (                                                                    | $D_{2i} = 1$ si posee la caracteristica                                                                     |
|                                                                                       | $D_{2i} = 0$ si no posee la caracteristica                                                                  |
| Una variable dependiente continua y dos                                               | $Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{3i} + \beta_4 X_i + U_i$                      |
| variables independientes: una continúa y una                                          | $D_{1i} = 1$ si posee la caracteristica                                                                     |
| dicótoma de más de dos categorías con k=4                                             | $D_{1i} = 0$ si no posee la caracteristica                                                                  |
|                                                                                       | $D_{2i} = 1$ si posee la caracteristica                                                                     |
|                                                                                       | $D_{2i} = 0$ si no posee la caracteristica                                                                  |
|                                                                                       | $D_{3i} = 1$ si posee la caracteristica                                                                     |
|                                                                                       | $D_{3i}=0$ si no posee la caracteristica                                                                    |



Una variable dependiente continua y una variable independiente dicótoma de dos

categorías

$$Y_i = \beta_o + \beta_1 D_i + U_i$$

 $Y_i = \beta_o + \beta_1 D_i + U_i$  Mide la diferencia promedio en la variable respuesta Y de tener y no tener la característica

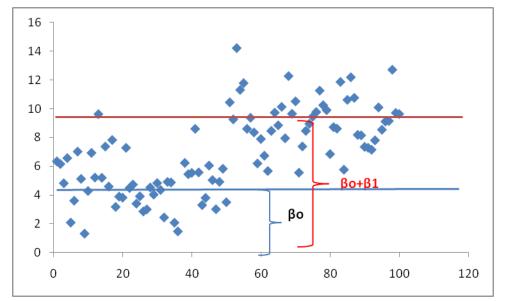
 $D_i = 1$  si posee la caracteristica

 $D_i = 0$  si no posee la caracteristica

$$E[Y_i/D_i = 1] = \beta_o + \beta_1$$

$$E[Y_i/D_i = 0] = \beta_o$$

$$E[Y_i/D_i = 1] - E[Y_i/D_i = 0] = \beta_1$$





Una variable dependiente continua y dos variables independientes: una continua y una dicótoma de dos categorías

$$Y_i = \beta_o + \beta_1 X_i + \beta_2 D_i + U_i$$

 $D_i = 1$  si posee la caracteristica

Mide la diferencia promedio en la variable respuesta Y de tener y no tener la característica

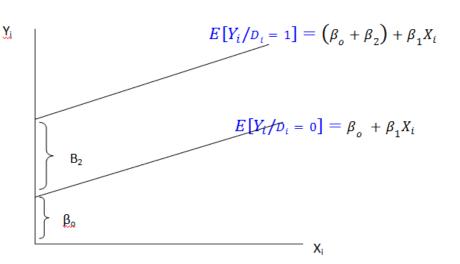
 $D_i = 0$  si no posee la caracteristica

$$E[Y_i/D_i = 1] = (\beta_o + \beta_2) + \beta_1 X_i$$

$$E[Y_i/D_i = 0] = \beta_o + \beta_1 X_i$$

$$E[Y_i/D_i = 1] - E[Y_i/D_i = 0] = \beta_2$$

$$H_0$$
:  $\beta_2 = 0$   $Vs. H_a$ :  $\beta_2 \neq 0$ 





Una variable dependiente continua y dos variables independientes: una continua y una dicótoma de dos categorías más la interacción

$$Y_i = \beta_o + \beta_1 X_i + \beta_2 D_i + \beta_{3*} * X_i * D_i + U_i$$

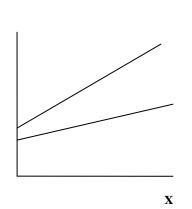
 $D_i = 1$  si posee la caracteristica

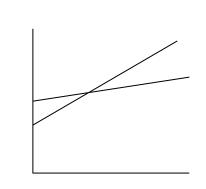
Y

Y

 $\mathbf{Y}$ 

 $D_i = 0$  si no posee la caracteristica





 $\mathbf{X}$ 



- 8. Violación de los supuestos del modelo de regresión
  - **✓** MULTICOLINEALIDAD
  - ✓ HETEROCEDASTICIDAD

**✓** AUTOCORRELACION

✓ NORMALIDAD DE LOS ERRORES





#### **MULTICOLINEALIDAD**

Relaciones lineales entre variables independientes

$$Y_{i} = \beta_{1} + \beta_{2} X_{2i} + \beta_{3} X_{3i} + \dots + \beta_{k} X_{ki} + u_{i}$$

$$Corr(X_{2}, X_{3})$$

$$Corr(X_{3}, X_{k})$$

La multicolinealidad puede deberse a los siguientes factores:

- •El método de recolección de información empleado.
- Restricciones sobre el modelo o en la población que es objeto de muestreo.
- Especificación del modelo.
- Un modelo sobredeterminado



#### **MULTICOLINEALIDAD**

#### Consecuencias prácticas de la multicolinealidad

- ✓ Aun cuando los estimadores de MCO son MELI, estos presentan varianzas y covarianzas grandes, que hacen difícil la estimación precisa.
- √ Factor inflador de varianza
- ✓ los intervalos de confianza tienden a ser mucho más amplios, conduciendo a una aceptación más fácil de la hipótesis nula .
- ✓ El estadístico de los coeficientes tiende a ser no significativo.
- ✓ Aun cuando el estadístico de uno o más coeficientes sea estadísticamente no significativo, el , la media global de bondad de ajuste, puede ser muy grande
- ✓ Los estimadores MCO y sus errores estándar pueden ser sensibles a pequeños cambios en la información.

#### Como detectarla?

- ✓ Un elevado pero pocas razones significativas (y un valor significativo)
- ✓ Altas correlaciones entre parejas de Regresores
- ✓ Regresiones Auxiliares:
- √ Valores Propios e Índice de Condición
- ✓ Factores de Tolerancia y de Inflación de Varianza



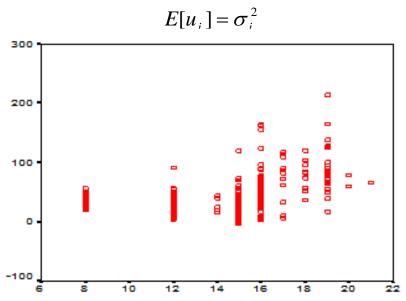
#### **MULTICOLINEALIDAD**

- ✓ Medidas remediales
- √Información a priori
- ✓ Combinación de información de corte transversal y de series de tiempo
- ✓ Eliminación de una(s) variable(s) y el sesgo de especificación:
- ✓ Transformación de variables:
- ✓ Datos nuevos o adicionales
- ✓ Reducción de la colinealidad en las regresiones polinomiales



#### **HETEROCEDASTICIDAD**

La heteroscedasticidad se presenta cuando las varianzas de  $u_i$  no son las mismas a lo largo de las observaciones. Simbólicamente,



- √A medida que aumentan las variables independientes las varianzas se hacen mayores.
- ✓ Presencia de factores atípicos.
- ✓La inclusión o exclusión de una observación de este tipo
- ✓Incorrecta especificación del modelo



#### **HETEROCEDASTICIDAD**

Consecuencias de utilizar MCO en presencia de heteroscedasticidad

- ✓ Los intervalos de confianza basados en los estimadores de MCO son muy amplios.
- √ Como resultado, es probable que las pruebas y den resultados imprecisos
- ✓ La característica más sobresaliente de estos resultados es que los MCO, con o sin corrección por heteroscedasticidad, sobreestiman consistentemente el verdadero error estándar obtenido mediante el procedimiento correcto.

Como detectarla?: Prueba de White.

Como corregirla:

Cuando es conocida: Método de Mínimos Cuadrados Ponderados

Cuando es desconocida: Método de Mínimos Cuadrados Generalizados

$$P\Omega P^{t} = I_{nxn}$$

$$PY = PXB + Pu$$

$$Y^{*} = X^{*}B^{*} + u^{*}$$



#### Autocorrelacion

$$Y_{i} = \beta_{1} + \beta_{2} X_{2i} + \beta_{3} X_{3i} + \dots + \beta_{k} X_{ki} + u_{i}$$

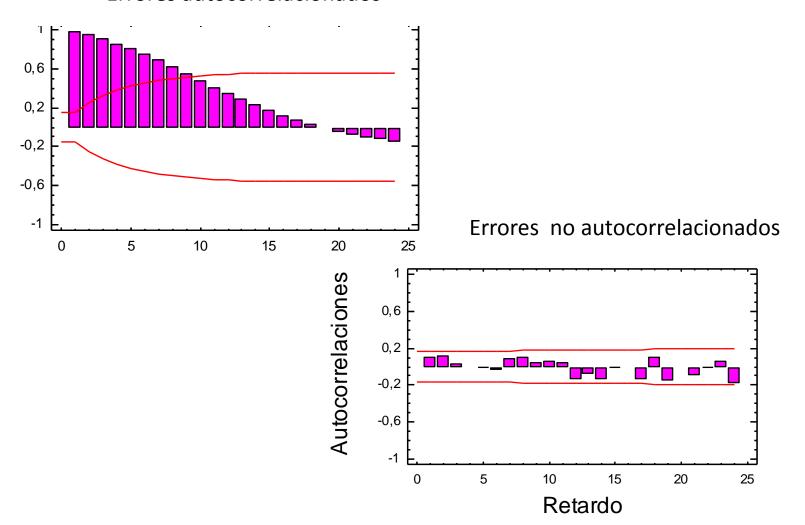
Dados dos valores cualquiera de X ,  $X_i$  y  $X_j$   $(i \neq j)$  , la correlación entre dos  $u_i$  y  $u_j$  cualquiera  $(i \neq j)$  es cero. Simbólicamente,

$$cov(u_{i}, u_{j} / X_{i}, X_{j}) = E[u_{i} - E[u_{i}] / X_{i}][u_{j} - E[u_{j}] / X_{j}]$$

$$cov(u_{i}, u_{j} / X_{i}, X_{j}) = E[u_{i} / X_{i}][u_{j} / X_{j}]$$

$$cov(u_{i}, u_{j} / X_{i}, X_{j}) = 0$$

### Errores autocorrelacionados







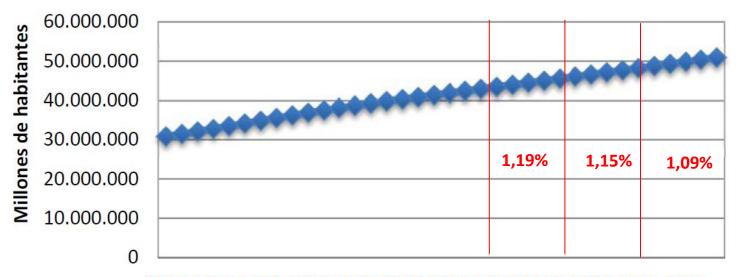
# Ejemplos.....



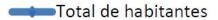


# Proyecciones de población DANE. 1985 – 2020

- Población inicial: 42.888.592 a 2005
- Tasa de crecimiento 2000-2005: 1,25%
- Tasa de crecimiento proyectada 2015-2020: 1,09%
- Población final: 50.249.912 a 2020



1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018



Proyecciones de población DANE. 1985 – 2020

$$N(t) = k_1 + \frac{k_2}{(1 + \exp(\alpha x_0 + \alpha_1 t))}$$

#### Dónde:

N(t): Población estimada en el tiempo t

 $k_1$ : Límite inferior de la función logística

 $k_2$ : Límite superior de la función logística (Valor donde se estabiliza la población en el largo plazo)

 $\propto_o$  y  $\propto_1$ : parámetros a estimar para la función logística con base en modelos econométricos y la información censal anterior.

Para la obtención de los pronósticos de población se emplearon valores para los parámetros  $k_1$ = 350.000 y  $k_2$ = 83.000.000. - Flórez C. (2000). Las transformaciones demográficas en Colombia durante el sigloXX.



$$N(t)-k_1 = \frac{k_2}{(1 + \exp(\alpha k_0 + \alpha_1 t))}$$

$$(1 + \exp(\alpha k_0 + \alpha_1 t)) = \frac{k_2}{N(t)-k_1}$$

$$\exp(\alpha k_0 + \alpha_1 t) = \left[\frac{k_2}{N(t)-k_1} - 1\right]$$

$$\alpha k_0 + \alpha k_1 t = \ln\left[\frac{k_2}{N(t)-k_1} - 1\right]$$

Reorganizando:

$$ln\left[\frac{k_2}{N(t)-k_1}-1\right] = \propto_o + \propto_1 t$$

$$\forall \text{Variable dependiente}$$

$$\forall \text{Variable independiente}$$



| Censo | t  | Población  | U*         | Ln (U)=Z   |
|-------|----|------------|------------|------------|
|       |    |            |            |            |
| 1938  | 0  | 9.066.218  | 8,52247867 | 2,14270722 |
|       |    |            |            |            |
| 1961  | 13 | 12.379.910 | 5,89946974 | 1,77486247 |
|       |    |            |            |            |
| 1964  | 26 | 18.337.973 | 3,61419416 | 1,28486892 |
|       |    |            |            |            |
| 1973  | 35 | 23.881.851 | 2,52713435 | 0,92708599 |
|       |    |            |            |            |
| 1985  | 47 | 31.593.587 | 1,65654517 | 0,50473421 |
|       |    |            |            |            |
| 1993  | 55 | 37.422.791 | 1,23883872 | 0,21417443 |
|       |    |            |            |            |
| 2005  | 67 | 41.468.384 | 1,01856182 | 0,01839165 |

Variable independiente

Variable dependiente



Tabla 1. Resultados de la estimación por MCO para los parámetros  $extstyle \circ_o extstyle extstyle \mathsf{y} \circ \mathsf{x}_1$ 

|              | Parámetros  | Coeficientes    | Error típico | Estadístico t | Probabilidad |
|--------------|-------------|-----------------|--------------|---------------|--------------|
| Intercepción | $\propto_o$ | 2,146394439***  | 0,057073084  | 37,60782294   | 2,50397E-07  |
| t            | $\alpha_1$  | -0,033571754*** | 0,001390491  | -24,14381077  | 2,27157E-06  |

\*\*\*Significativo al 1%. R2= 0.99. Prob (F)= 0.000. n=7 observaciones.

Variable dependiente Ln (U)=Z

De esta manera, la función logística queda completamente especificada con los siguientes parámetros:

$$N(t) = 350.000 + \frac{83.000.000}{(1 + \exp(2.146394439 - 0.033571754t))}$$











# Gracias por su atención

**Harold Coronado Arango** 



