

## Market Access and Commercialization: Assessment of Scenarios with Policy Analysis Matrix



Alex Winter-Nelson, University of Illinois Solomon Lemma, IFPRI Shahidur Rashid, IFPRI (Presenting)

#### Prepared for IFAD-IFPRI Strategic Partnership Program Innovative Policies for Improved Market Access Climate Change Mitigation

Washington DC July 25, 2012

## **Plan of presentation**

- The rationale for the activity and the method
  Why this activity and method
- Illustration of Policy Analysis Matrix (PAM)
  - What can it do and how is it done?
- The preliminary results
  - Geographic focus and data sources
  - The commodity focus (maize and cotton)
- Identifying opportunities (very tentative)
- Summary and way forward

## The rationales

## Rationale for the activity

- assess comparative advantage of agricultural sector in Northern Mozambique, where IFAD and the GoM are implementing PROMER
- Identify the interventions and policy changes that could influence the region's comparative advantage
- Build national capacity for monitoring policy parameter / project progress (the objective was to implement the PAM with national partners)
- Rationale for proposing PAM
  - Simple yet powerful to analyze comparative advantage under alternative policy scenarios and draw implications for poverty alleviation economic growth potentials
  - Easy to train country partner to carry out the analysis

## Illustration of PAM (1)

Method to identify agricultural activities that

- Contribute to economic growth for nation
  - Find comparative advantages
- Contribute to farm income growth
  - alleviate poverty

Method to identify interventions that could increase both of these contributions in specific agricultural activities.

## Illustration of PAM (2)

## Key elements of analysis:

- Comparison of costs and benefits of farmers for a given commodity (private costs) with that of the costs and benefits to the whole country (social costs).
- Private costs-benefits and social costs-benefits can differ due to taxes and subsidies or market failures.
- Finding beneficial and sustainable farm activities that are profitable to farmers and the economy as whole.

## Illustration of PAM (3)

## **Example 1: import restriction / subsidies**

- US farmer sees revenue of 20 cents per pound of sugar.
- US could import sugar for 10 cents per pound but restricts imports, raising price to 20.
- Sugar is worth 10 to the national economy.
  Sugar could be gotten for that much!
- Sugar earns 20 for the US farmer.

## Illustration of PAM (4)

## **Example 2: Input subsidies**

- Farm costs may also differ from national costs due to input subsidy policies.
- If fertilizer is subsidized, its cost to the farmer is less than its cost to the country. The state covers part of cost.
- With a 20% subsidy, a farmer would pay 10 for some input, but the total cost to the country would be the 10 she pays, plus 2 paid by the state. The national cost is 12.

## **PAM Illustration: Farm and National Income (1)**

| Per hectare of land    | Farm   | Nation |
|------------------------|--------|--------|
| Revenue (\$)           | 20,000 | 10,000 |
| Input Costs (\$)       | 10,000 | 12,000 |
| Labor and Capital (\$) | 5,000  | 5,000  |
| Profits (\$)           | 5,000  | -7,000 |

#### Policy inconsistency

- 1. Here the farmer finds production **profitable**,
- 2. But that production costs the country more than it needs to pay.
- 3. The country loses \$7,000 per HA of land for producing this crop compared to importing.

## **PAM Illustration: Farm and National Income (2)**

| Per hectare of land    | Farm   | Nation |
|------------------------|--------|--------|
| Revenue (\$)           | 10,000 | 20,000 |
| Input Costs (\$)       | 10,000 | 12,000 |
| Labor and Capital (\$) | 5,000  | 5,000  |
| Profits (\$)           | -5,000 | 3,000  |

#### Policy inconsistency

- 1. Here, policy is depressing the local prices /taxing the producers
- 2. It is worth 20, but farmer receives only 10.
- 3. Producing a HA of this crop would profit the country \$3,000 over importing, but farmers lose \$5,000 if they grow it.

Bottom line: Little grown, lost opportunity

## **PAM Illustration: Farm and National Income (3)**

| Per HA of land         | Farm   | Nation |
|------------------------|--------|--------|
| Revenue (\$)           | 18,000 | 20,000 |
| Input Costs (\$)       | 10,000 | 12,000 |
| Labor and Capital (\$) | 5,000  | 5,000  |
| Profits (\$)           | 3,000  | 3,000  |

#### **CONSISTENCY!**

Here production would be:

**1. Profitable to farmers (reduces poverty)** 

2. Profitable for nation (raises economic growth)

The bottom line: Policy Analysis looks to find these conditions and to

identify ways to create these conditions.

## **Some useful measures from PAM**

| Per Hectare            | Farm              | Nation     | Diff.      |
|------------------------|-------------------|------------|------------|
| Revenue (\$)           | 18,000 <b>(A)</b> | 20,000 (E) | -2,000 (I) |
| Input Costs (\$)       | 10,000 (B)        | 12,000 (F) | -2,000 (J) |
| Labor and Capital (\$) | 5,000 (C)         | 5,000 (G)  | 0 (K)      |
| Profits (\$)           | 3,000 (D)         | 3,000 (H)  | 0 (L)      |

#### Some useful summary measures from the PAM:

Private Cost benefit ratio (farm): $(B+C)/A \rightarrow Ratios handy for comparingSocial Cost benefit ratio (country):<math>(B+C)/A \rightarrow Ratios handy for comparingDomestic Resource Cost ratio:<math>(F+G)/E \rightarrow Different commodities.Domestic Resource Cost ratio:<math>C/(E-F) \rightarrow$ Producer Subsidy Equivalent: $L/A \rightarrow Measure of trade protectionNominal Rate of Protection:<math>(A/E)-1 \rightarrow Measure of tax /subsidy$ 

## What we look for alternative policy environment

| Per Hectare            | Farm       | Nation     | Diff.      |
|------------------------|------------|------------|------------|
| Revenue (\$)           | 18,000 (A) | 20,000 (E) | -2,000 (I) |
| Input Costs (\$)       | 10,000 (B) | 12,000 (F) | -2,000 (J) |
| Labor and Capital (\$) | 5,000 (C ) | 5,000 (G)  | 0 (K)      |
| Profits (\$)           | 3,000 (D)  | 3,000 (H)  | 0 (L)      |

Example:

Production is privately and socially profitable => comparative advantage exists. Slight overvaluation of currency implies depressed private revenue, tradable input costs and private profits.

Simulation of infrastructure or technology improvement would alter private and social values.



## POLICY ANALYSIS MATRIX FOR NORTHERN MOZAMBIQUE

## **Mozambique PAM: Geographic Focus (1)**



#### 15 PROMER District in 4 Region

- Niassa ( 6 District)
- C delgado (5 District)
- Nampulla (2 District)
- Zambez (2 Destrict)

## **Mozambique PAM: Geographic Focus (2)**



#### Maize

- Important staple crop
- In 2010/11 2.1 million ha
- There is huge gap between actual and potential yield
  - Actual 0.9 t/ha
  - Potential 5-6 t/ha
- Small holder dominate

#### **Two farming sectors**

- Individual family farmers (FAM) Uses family labor
- Medium and large scale farmers (ECF) >=10 ha (only 5% of the land)

## **Mozambique PAM: Geographic Focus (3)**



#### Cotton

- Income for 250,000 families)
- 20% of agricultural sales
- In 2010, 130 thousand hectare of land allocated to Cotton
- An important cash crop and part of smallholders livelihoods
- Overlaps with PROMER focus regions

## **Mozambique PAM: Data sources**

- ITA 2008 Household survey (MoA and MSU)
- FEWSNET Mozambique country office
- SAFEX (South Africa Future Exchange) and
- Mozambique Ministry of Agriculture Database

A serious missing element is triangulation with field data and training for local partners

## **Mozambique PAM for Maize: Baseline (1)**

## Baseline PAM

- Typical smallholder production system (no purchased inputs)
- Maize price based on export to Malawi (Blantyre cif) and policy conditions in 2008.
- Existing infrastructure and transport costs imply Nampula price (Blantyre cif-costs=Nampula fob)
- Blantyre Price set to US\$325/MT

## **Mozambique PAM: Baseline for maize (2)**

| Maize<br>MZN/HA | Revenue | Input Costs | Labor and<br>Capital | Profits |
|-----------------|---------|-------------|----------------------|---------|
| Private         | 4,682   | 0.00        | 2,486                | 2,196   |
| Social          | 5,604   | 0.00        | 2,483                | 3,121   |
| Divergence      | -922    | 0.00        | 3                    | -925    |

Divergence emerges from estimated 15% overvaluation of currency. Appreciation of since 2008 has likely removed divergence raising private to social level. Still very low private and social returns (MZM 3100 < US\$100).

## **Mozambique PAM: Maize alternative scenario (1)**

Introduction of Emergent Commercial Farmers:

- Cultivate at 10 ha of land
- Use modern inputs

## **Mozambique PAM: Maize alternative scenario (2)**



## **Mozambique PAM: Maize alternative scenarios (3)**

- Emerging commercial farmers' technology
- Reduced transactions costs (50%)
- Trade with Blantyre

## **Mozambique PAM: Maize alternative scenarios (4)**

|                                        |         |                   | Costs of |         |
|----------------------------------------|---------|-------------------|----------|---------|
|                                        |         | Costs of Tradable | Domestic |         |
| MZM/HA                                 | Revenue | Inputs            | Factors  | Profits |
| PRIVATE PRICES                         |         |                   |          |         |
| Traditional Technology Baseline        | 4,682   | 0.00              | 2,486    | 2,196   |
| PRIVATE PRICES                         |         |                   |          |         |
| Traditional Technology, with no        |         |                   |          |         |
| overvaluation + 50% Lower Trans Costs  | 6,044   | 0.00              | 2,485    | 3,559   |
| PRIVATE PRICES                         |         |                   |          |         |
| ECF Technology ; no currency           |         |                   |          |         |
| overvaluation + 50% Lower Trans Costs  | 20,779  | 1,901             | 2,854    | 16,024  |
| SOCIAL PRICES                          |         |                   |          |         |
| ECF Technology with no overvaluation + |         |                   |          |         |
| 50% Lower Trans Costs                  | 21,705  | 1,777             | 2,832    | 17,096  |

Author's calculations. Market outlet is Blantyre. Data are provisional and results are not to be cited.

# **Mozambique PAM for maize: alternative scenarios (5)**

- Should Blantyre market be relied upon? What if there's trade restrictions?
  - An alternative would be integrating North with Maputo.
  - The next simulations looks at that possibility

## **Mozambique PAM for maize: alternative scenarios (6)**

|                                  |         | Costs of<br>Tradable | Costs of |         |
|----------------------------------|---------|----------------------|----------|---------|
| MZN/HA                           | Revenue | Inputs               | Factors  | Profits |
| PRIVATE PRICES                   |         |                      |          |         |
| Traditional Technology Baseline  | 3,771   | 0.00                 | 2,486    | 1,285   |
| PRIVATE PRICES                   |         |                      |          |         |
| Traditional Technology 50% Lower |         |                      |          |         |
| Trans Costs                      | 4,371   | 0.00                 | 2,485    | 1,885   |
| PRIVATE PRICES                   |         |                      |          |         |
| ECF Technology + 50% Lower Trans |         |                      |          |         |
| Costs                            | 12,181  | 1,901                | 2,854    | 7,426   |
| SOCIAL PRICES                    |         |                      |          |         |
| ECF Technology + 50% Lower Trans |         |                      |          |         |
| Costs                            | 12,035  | 1,777                | 2,832    | 7,426   |

#### **Mozambique PAM: Baseline for cotton**

| Maize<br>MZN/HA | Revenue | Input Costs | Labor and<br>Capital | Profits |
|-----------------|---------|-------------|----------------------|---------|
| Private         | 3339.6  | 340.5       | 1117.7               | 1881.4  |
| Social          | 4352.3  | 32.7        | 1157.3               | 3162.3  |
| Divergence      | -1012.7 | 307.8       | -39.5                | -1280.9 |

Divergence emerges from estimated 15% overvaluation of currency. Appreciation of since 2008 has likely removed divergence raising private to social level. Still very low private and social returns (MZN 3160 which is close to US\$100).

### **Mozambique PAM: Cotton comparative advantage**





#### **Protection / Taxation for maize**



#### **Indicators of Protection**

- NPCo :-Nominal Protection
  Coefficient on Output > 1 implies
  protection.
- NPCi :-Nominal Protection Coefficient on Tradable Inputs < 1 implies protection to output.
- **PSE:-**Producer subsidy equivalent >0 implies subsidy.
- **SRP:-**Subsidy Ration to Producers >0 implies subsidy.
- Net Transfer:-Domestic currency transfers per Ha > 0 implies subsidy

## **Protection / Taxation for cotton**



#### **Indicators of Protection**

- NPCo:-Nominal Protection Coefficient on Output > 1 implies protection.
- NPCi :-Nominal Protection Coefficient on Tradable Inputs > 1 implies protection to output.
- EPC: Effective protection coefficient >1 → protection
- **PSE:-**Producer subsidy equivalent >0 implies subsidy.
- Net Transfer:-Domestic currency transfers per Ha > 0 implies subsidy

## **Summary and way forward**

- PAM can be a useful tool for updating policy environment and tracking progress of selected intervention crops.
- The exercise based on secondary data indicates that there are comparative advantages in both maize and cotton.
- However, these crops (and most likely the other crops) are not likely to have significant impact on poverty under the current traditional technology and high transactions costs.
- There are clear indications that misalignment in macro parameters (interest rates and currency) causes divergence in private and social costs.

## The way forward

- The data used in developing the Mozambique PAM were not validated / triangulated with farm budget survey
- Therefore, these results are indicative and preliminary.
- The exercise suggests the potential for the analytical approach
  - Such as developing spatially disaggregated PAM analysis within a value chain approach, which can triangulate the logic of the integrated market development approach of the PROMER programs
  - Incorporate gender dimension to PAM in order to carry out gender disaggregated simulations of commodity comparative advantages.
- For this exercise to be useful, the partnership should focus on transferring the methods and techniques to monitor and track the outcomes of policies / interventions. This couldn't be done during the first phase, but can be picked up in the second phase if the partners are serious.