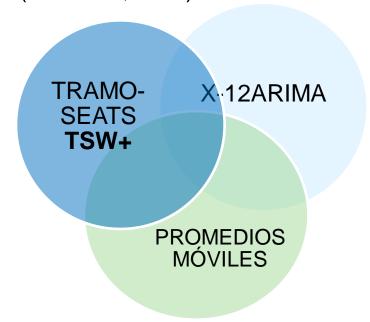


CURSO REGIONAL SOBRE HOJA DE BALANCE DE ALIMENTOS, SERIES DE TIEMPO Y ANÁLISIS DE POLÍTICA


Análisis de Series de Tiempo

MSc. Sandra Hernández sandra.hernandezro@gmail.com Sede Subregional de la CEPAL en México Ciudad de México, del 19 al 23 de enero, 2015

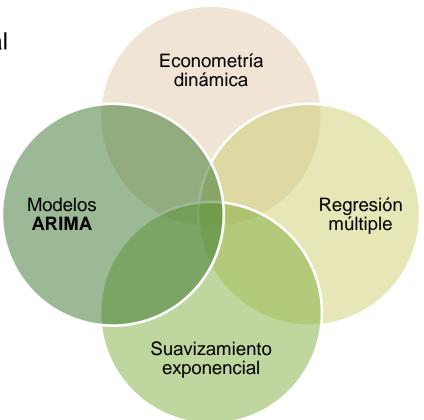
INTRODUCCIÓN

Preguntas a responder por el analista (Maravall,1999):

- Dónde estamos?
 - Métodos de ajuste estacional
 - Extraer una señal clara
- Hacia dónde vamos?
 - Técnicas de pronóstico

INTRODUCCIÓN

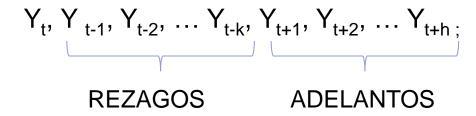
Preguntas a responder por el analista (Maravall, 1999):


- Dónde estamos?
 - Técnicas de ajuste estacional
 - Extraer una señal clara
- Hacia dónde vamos?
 - Técnicas de pronóstico

INTRODUCCIÓN

Preguntas a responder por el analista (Maravall, 1999):

- Dónde estamos?
 - Técnicas de ajuste estacional
 - Extraer una señal clara
- Hacia dónde vamos?
 - Técnicas de pronóstico



Tema I: Conociendo una serie de tiempo

1.Qué es una serie de tiempo?

Las series de tiempo son colecciones de observaciones sobre un determinado fenómeno efectuadas en sucesivos momentos del tiempo, usualmente equiespaciados.

Corresponde a una realización de un proceso generador de datos.

Serie estocástica

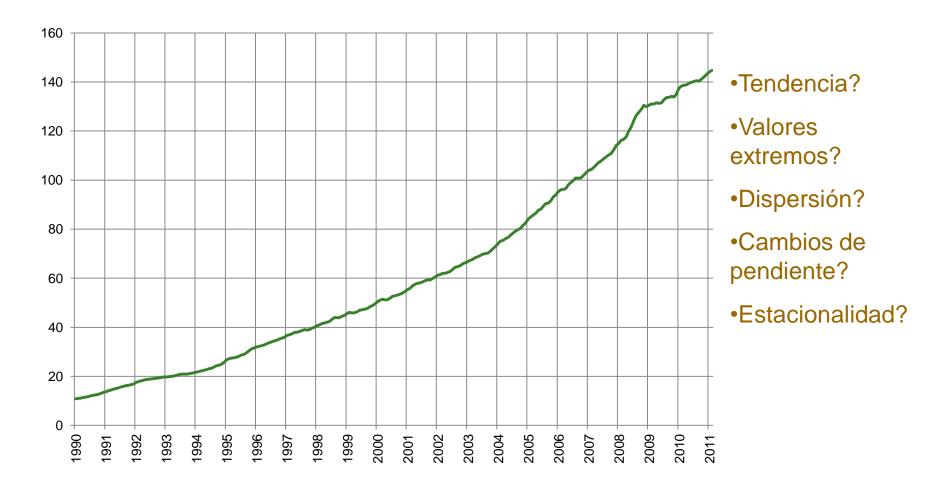
una parte conocida (sistemática) susceptible de predecir y de una parte totalmente desconocida (aleatoria)

Serie determinística

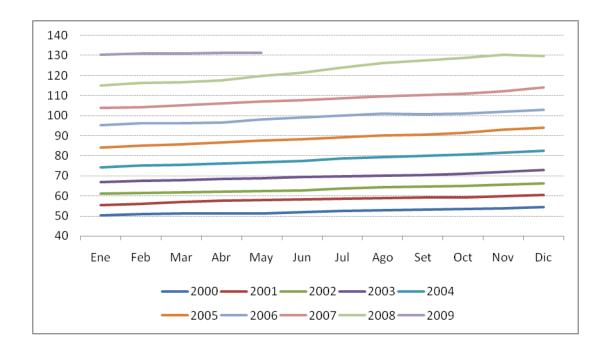
el futuro se puede predecir sin error Es una variable que está determinada o fija y que no cambia de una muestra a otra

2. El análisis visual

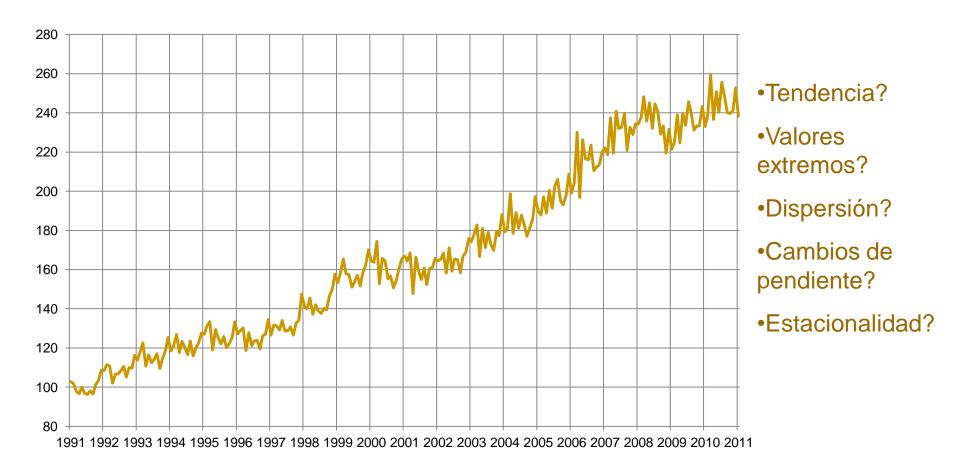
La investigación científica asume como una de sus primeras tareas, identificar las cosas (características o factores) que participan en un fenómeno.

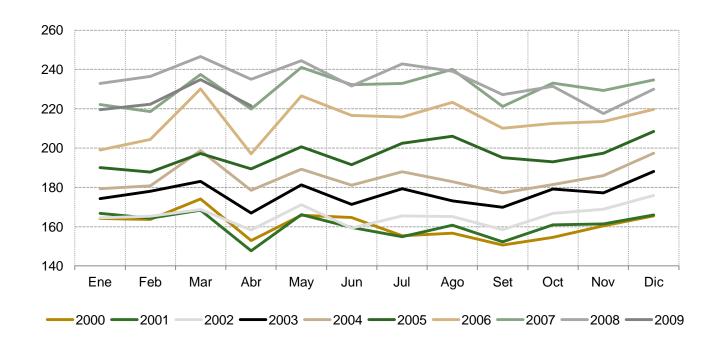

Los gráficos son la forma más efectiva de identificar efectos de eventos que inciden en los datos. De ser posible, estos eventos deben ser ajustados o incluidos en el modelo.

Un gráfico permito observar:


- Frecuencia de los datos
- ·La tendencia
- Los valores extremos
- La dispersión
- Cambios estructurales
- Cambios de pendiente
- La estacionalidad

Ejemplo 1. Índice de precios al consumidor IPC

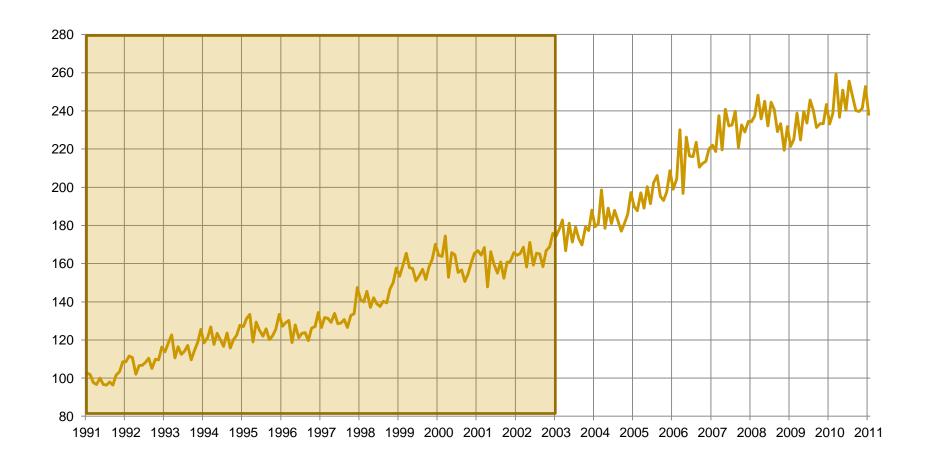

Julio 2006=100


Ejemplo 1. gráfico estacional

Ejemplo 2. Indice mensual de la actividad económica (IMAE)

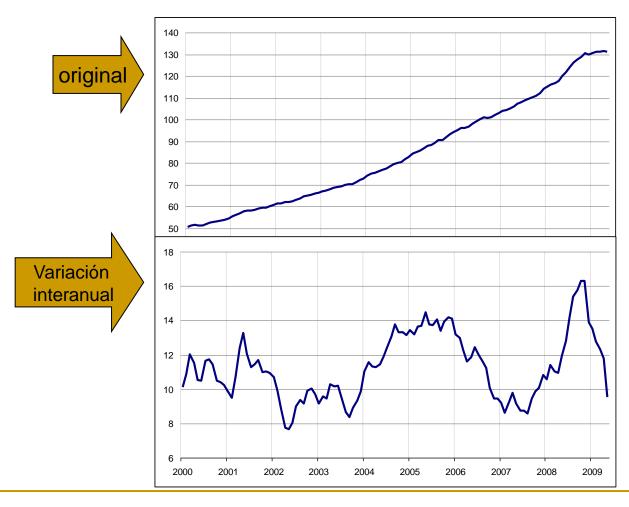
Ejemplo 2. gráfico estacional

- Permite ver el patrón estacional en los datos
- Permite observar momentos donde la serie se desvía de su patron estacional

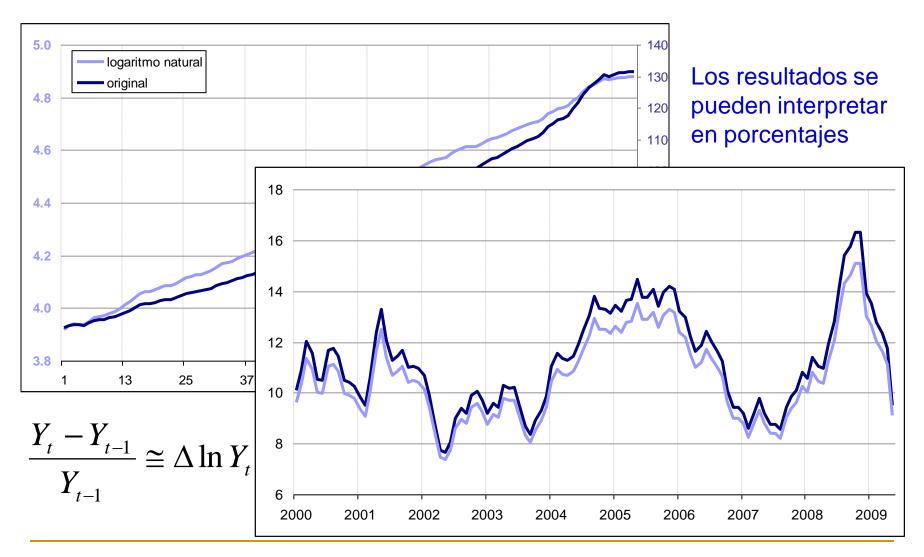

3. Longitud de las series: Cuántos datos utilizar?

- Depende del objetivo del estudio:
 - Para análisis de ciclos se requieren series muy largas (más de 10 años)
 - Para modelos univariantes se sugiere no menos de 5 años
 - Para modelos de regresión no menos de 15 datos
 - Para calcular la correlación entre dos variables no menos de 30 datos.
- El aporte a las series de tiempo de La crítica de Lucas sugiere el número de datos de una serie de tiempo que se deben utilizar, reduciéndolo a aquel periodo de datos que lucen homogéneos

Critica de Lucas: sostiene que, bajo la hipótesis de expectativas racionales, los parámetros estimados a partir de un modelo econométrico no se mantendrían. La ocurrencia de cambios de política llevaría a los agentes a modificar sus comportamientos, a fin de adecuarse a la nueva realidad. LUCAS, R.E., Jr.(1976), "Econometric policy evaluation: A critique", *Conference Series on Public Policy.*


Existe un "trade-off" entre el tamaño de la muestra y la estabilidad del modelo

Ejemplo 3: Escogencia del rango de datos


4. Variables derivadas

Ejemplo 4: Tasas de variación

- •Una serie transformada puede tener propiedades estadísticas diferentes a la serie original
- Graficar los datos: en niveles, logaritmos, tasas de crecimiento, reales, nominales

Transformación logarítmica (IPC)

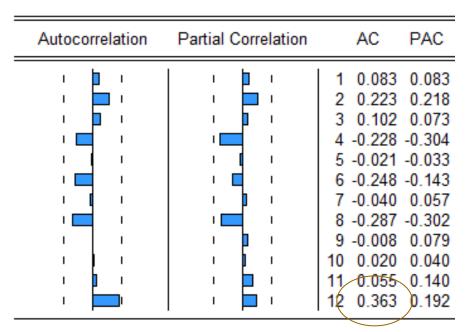
5.La autocorrelación

- La correlación en series de tiempo se conoce como autocorrelación o correlación serial.
- La correlación entre Y_t y Y_{t-k} se conoce como autocorrelación de orden k y se denota como ρ_k
- Y_{t-k} se le conoce como *rezagada* k periodos
- ρ₁ (Y_t y Y_{t-1})se llama autocorrelación de primer orden
- ρ₂ (Y_t y Y_{t-2})se llama autocorrelación de segundo orden
- La correlación indica dos aspectos:
 - ✓ El valor indica la magnitud de la asociación (-1 y 1) 「k -
 - ✓ El signo indica la dirección de la relación

$$r_{k} = \frac{\sum_{t=1}^{n-k} (Y_{t} - \overline{Y})(Y_{t+k} - \overline{Y})}{\sum_{t=1}^{n} (Y_{t} - \overline{Y})^{2}} = \frac{Cov_{k}}{S^{2}}$$
 r_k es el estimador de ρ_{k}

Negativa: cuando los valores de t aumentan los de t+k disminuyen

Cero: No hay relación armónica en como los valores de t y t+k cambian

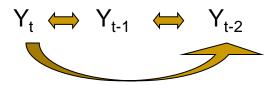

Positiva: cuando los valores de t aumentan, los valores de t+k también aumentan

6.La función de autocorrelación

Si se calculan las correlaciones para distinto número de rezagos, digamos de 1 a 12:

$$r6=-0.248 r12=0.363$$

Este conjunto de correlaciones conforman la *Función de autocorrelación* o ACF



El ACF es una herramienta básica al momento de explorar una serie de tiempo:

- Es util para ver estacionalidad, tendencias y otros patrones,
- Sirve para medir si los valores previos contienen mucha información acerca del próximo valor.

7.La autocorrelación parcial

 La correlación parcial mide el grado de asociación entre Y_t y Y_{t-k}, cuando el efecto de otros rezagos es removido.

 La correlación parcial es calculada mediante una ecuación de regresión, donde los coeficientes de los rezagos de Y representan la correlación parcial, del siguiente modo:

$$Y_{t} = b_{0} + b_{1}Y_{t-1} + b_{2}Y_{t-2} + \dots + b_{k}Y_{t-k}$$

$$Y_{t} = b_{0} + b_{1}Y_{t-1}$$

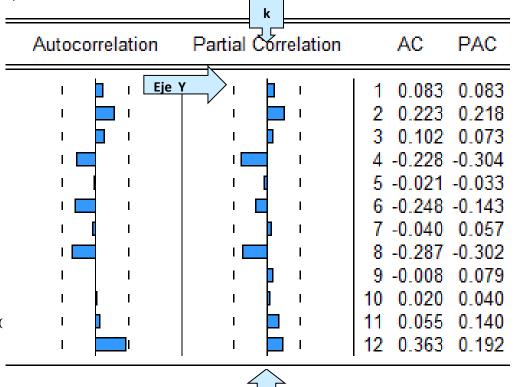
$$Y_{t} = b_{0} + b_{1}Y_{t-1} + b_{2}Y_{t-2}$$

$$Y_{t} = b_{0} + b_{1}Y_{t-1} + b_{2}Y_{t-2} + b_{3}Y_{t-3}$$
Este cálculo usu aproxima con la Yule-Walker

Este cálculo usualmente se aproxima con las ecuaciones de Yule-Walker

8.El correlograma

ACF y PACF

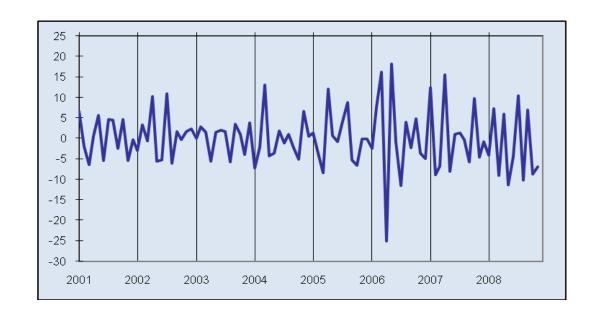

Eje X: rezagos en el tiempo (k)

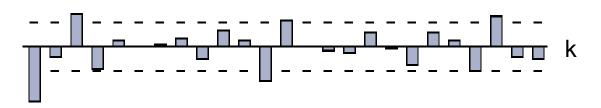
Eje Y: magnitud de la autocorrelación (-1, 1)

El error estándar de ACF es:

$$s(r_k) = \frac{\sqrt{1 + 2\sum_{j=1}^{k-1} r_j^2}}{\sqrt{n}}$$

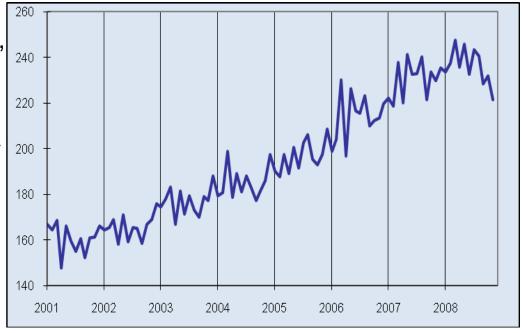
- ■Bajo el supuesto de ruido blanco, las autocorrelaciones deben ser cercanas a cero y están normalmente distribuidas con error estándar aproximado con $1/\sqrt{n}$
- Los limites de confianza se calculan como $L_i = r_k \pm 1.96 / \sqrt{n}$
- El máximo k recomendado es n/4

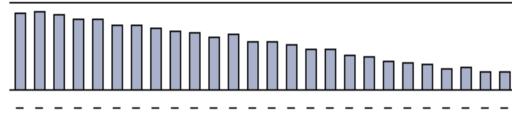



9.La estacionariedad

- El proceso está en equilibrio estadístico alrededor de un valor medio.
- Distribución de probabilidad común e invariante en el tiempo.
 - La media es única (local y global) y representativa de todo el período analizado.
 - La varianza es constante y finita.
 - ✓ La función de autocorrelación decae rápidamente en el tiempo.
 - ✓ Un shock en un momento dado tiene efecto en el corto plazo.
- Denominación en econometría: I(0)
- El análisis visual de la serie es con frecuencia <u>suficiente</u> para evaluar la estacionariedad de una serie.
 - El correlograma complementa el análisis de estacionariedad
 - Las pruebas formales de Integración también miden estacionariedad

Ejemplo de una serie estacionaria


- La media es constante.
- La varianza es constante.
- La función de autocorrelación decae rápidamente cuando aumenta k.



No estacionariedad

- La mayoría de variables en economía son no estacionarias, aunque son susceptibles de estacionarizar por medio de transformaciones.
 - La media no es única, varía durante el período analizado.
 - La variancia no es constante
 - La función de autocorrelación decae lentamente en el tiempo.
- Un shock en un momento dado se propaga a través del tiempo.
- Denominación en econometría:
 I(1) e I(2)

10. Medición de volatilidad

- La volatilidad se refiere al grado de incertidumbre en un periodo de tiempo de una determinada variable.
- Usualmente se utiliza una medida de la dispersión de una variable:
 la desviación estándar o la variancia.
- Puede ser un número absoluto (desviación estándar) o una razón (como porcentaje de la media, llamado coeficiente de variación).
- Comúnmente la volatilidad está asociada al riesgo. Entre más alta la volatilidad hay más riesgo.
- La volatilidad no es un indicador de la dirección del cambio (debido a que los cambios están elevados al cuadrado).
- La volatilidad puede variar en el tiempo: periodos más o menos volátiles.
- También se puede medir con el error estándar de los residuos de un modelo univariante.
- Método más elaborados utilizan los modelos GARCH

11. Reflexiones finales:

conociendo una serie de tiempo

- He visto un gráfico de mi serie?
- Es estocástica o determinística?
- Tiene estacionalidad?
- Es estacionaria? o tiene tendencia?
- Es la serie muy volátil? Tiene valores extremos?, cuándo y por cual razón?
- Hay cambios de pendiente en los datos?
- Qué correlaciones del ACF son significativas?
- Qué rango de datos usaría en los análisis?
- Uso de variables derivadas (reales, tasas de variación, etc)?

"The statistician should fall in love with his data, and should avoid falling in love with his model",

Jenkins, 1979